
https://exploitreversing.com

1 | P a g e

Exploiting Reversing (ER) series:
Article 01 | Windows kernel drivers – part 01
(a step-by-step vulnerability research series on Win, macOS, hypervisors and browsers)

by Alexandre Borges
release date: APRIL/11/2023 | rev: A.1

0. Quote

“Success. It's got enemies. You can be successful and have enemies or you can be unsuccessful and have

friends.”. (Dominic Cattano | “American Gangster” movie - 2007)

1. Introduction

Welcome to the first article of Exploiting Reversing (ER) series, a step-by-step vulnerability research

series on Windows, macOS, hypervisors and browsers, where we will review concepts, architecture and

practical steps related to vulnerability research. If readers have not read past articles about my other series

(MAS – Malware Analysis Series) yet all of them are available on:

▪ MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/

▪ MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/

▪ MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

▪ MAS_4: https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/

▪ MAS_5: https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/

▪ MAS_6: https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/

▪ MAS_7: https://exploitreversing.com/2023/01/05/malware-analysis-series-mas-article-7/

In different opportunities we have to analyze kernel drivers or mini-filter drivers to understand a

vulnerability or even a malicious driver (as known as rootkit), and this topic is usually complex and presents

many details eventually deserves to be explained. However, I still needed a better motivation to start this

new series and it came up while I was analyzing details on Microsoft Security Events Component Minifilter

(C:\Windows\system32\drivers\mssecflt.sys), which it is a required dependency that enables FltMgr

service (fltmgr.sys) to be started, and stumbled with functions from this driver that, indirectly,

remembered me about techniques used to detect different kind of evasions using NtCreateProcessEx()

that I had read from a good article delivered by Microsoft last year:

https://www.microsoft.com/security/blog/2022/06/30/using-process-creation-properties-to-catch-

evasion-techniques/.

At that point I realized that I could really start a new series of article, covering topics as reversing

engineering and vulnerability research and, effectively, moving away from malware analysis, which it is a

https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/
https://exploitreversing.com/2023/01/05/malware-analysis-series-mas-article-7/
https://www.microsoft.com/security/blog/2022/06/30/using-process-creation-properties-to-catch-evasion-techniques/
https://www.microsoft.com/security/blog/2022/06/30/using-process-creation-properties-to-catch-evasion-techniques/

https://exploitreversing.com

2 | P a g e

stuff that I don’t work with for a long time, but also keep writing to offer information to other professionals

who need it. Somehow, this series of articles offers me this freedom and opportunity to produce

something that, eventually, could be useful for people in the area.

While I am not concerned to analyze malicious code itself in this series, I will be using a malicious driver to

illustrate a few concepts about a section that will be presented later in this article, but it will be an

exception in this series. As I mentioned previously, the main purpose of this series is being focused on

reversing engineering, vulnerability research and, eventually, something about operating system internals.

Certainly, there is nothing new here and the idea is to provide correlated information that might help

readers to understand subtle details which could go unnoticed while reading articles, books and references

on the Internet. Mainly, while doing research, we usually learn a lot, but most of the time the information

is spread over multiple sources so that it could be hard to put everything together.

Readers from my previous articles could wonder whether I have plans to continue the MAS (Malware

Analysis Series) and, definitely, I will keep writing it. The only difference is that I will alternate between

series according to inspiration and spare time, of course. Finally, and the more important fact by far, this

article will present mistakes, typos and so on, and soon I know about them, so I will release a fixed version

of this article.

2. Acknowledgments

I could not write this series and the MAS (Malware Analysis Series) without receiving the decisive help from

Ilfak Guilfanov (@ilfak), from Hex-Rays SA (@HexRaysSA), because I didn’t have an own IDA Pro license,

and he kindly provided everything I needed to write this series about reversing and vulnerabilities, and

other one that are coming. However, his help didn’t stop in 2021, and he and Hex-Rays have continuously

helped until the present moment by providing immediate support for everything I need to keep these

public projects. Additionally, Ilfak is always truly kind replying to me every single time that I send a

message to him. This section, about acknowledgments, can be translated to one word: gratitude.

Personally, all messages from Ilfak and Hex-Rays expressing their trust and praises on my previous articles

are one of most motivation to keep writing as well readers who send me even a single message thanking

me. Once again: thank you for everything, Ilfak.

I have chosen a quote to start each article to subtly show my thinking about life and information security in

general, sometimes mirroring the present days and all challenges that have forced me to make a deep

reflection over. At the end of day, we should invest in the work that we really love doing, no matter our

age, because life is short, and the ahead day is our future. Enjoy the journey!

3. References

It is always a complex task to provide references and recommendations to any topic, but I want to leave

few references I have used in the last years, and which might help readers to learn about the theme,

independently whether working on vulnerability research or malware analysis:

https://exploitreversing.com

3 | P a g e

▪ Microsoft Learn: https://learn.microsoft.com/en-us/windows-hardware/drivers/

▪ Windows drivers samples: https://github.com/Microsoft/Windows-driver-samples

▪ Windows Internals 7th edition book (Parts 1 and 2) by Pavel Yosifovich , Alex Ionescu, Mark

Russinovich and David Solomon, and Andrea Allievi, Alex Ionescu, Mark Russinovich and David

Solomon, respectively.

▪ Practical Reverse Engineering by Bruce Dang, Alexandre Gazet and Elias Bachaalany.

Mostly (over 95% of time), I have used the official Microsoft Documentation and respective Windows

drivers sample referred by the first two items above, but both Windows Internals books and Practical

Reverse Engineering book offer an excellent coverage about the topic.

4. Kernel drivers review

I don’t have any perspective to get into details about kernel drivers programming here and, certainly, it

would be impossible to touch a complex theme over a simple article, but I will try to do a minimum

revision about the topic and hopefully these words not only will help readers now, but will provide the

necessary foundation to the future ones. Actually, learning about drivers will help readers a lot while

researching for vulnerabilities in kernel drivers, as also using fuzzing tools to prospect such bugs.

To our context and concern (far away from formal WDM classification), we have distinct types of drivers:

▪ device driver: it communicates with hardware devices like printers, USB sticks and other ones.

▪ software kernel driver: this type of driver runs and establishes communication with the kernel

through resources offered by the system. Additionally, it is not the goal of this type of driver to

communicate directly with a physical device.

▪ mini-filter driver: it is a software driver that can monitor, intercept, and change data transferred

between applications and/or drivers and the system (kernel or file system, for example). At the

same way, this kind of driver doesn’t communicate directly with the device driver.

Certainly, we aren’t interested in learning about device drivers in this article (although it is a fascinating

topic) but referring to device drivers is still a broad term, which could cause some confusion. In fact, a

more precise name would be function drivers, and without forgetting that we also have bus drivers that

are responsible for establishing communication between a device, a PCI-X or USB bus, for example.

Anyway, in this section we will review the main concepts about kernel drivers, and in the next one we’ll

refresh concepts related to minifilter drivers.

If reader get involved in developing kernel drivers, so they will quickly learn that the development process

brings a series of challenges because as driver run on the kernel side, so any unhandled exception probably

will crash the system and, according to my experience, finding bad lines of code is not always something

trivial. One of many things that will be explained later in this article is that kernel drivers can run in

DISPATCH_LEVEL (IRQL 2), which presents a different consequence from userland applications that always

run in PASSIVE_LEVEL (IRQL 0). In fact, there is a quite extensive list of changes while programming and

writing kernel drivers than while writing user mode application, starting by the fact that most standard

libraries that help us a lot while writing userland applications are not available in kernel mode. We also

have the same concerns about security and, for example, if a driver is unloaded from memory without

https://learn.microsoft.com/en-us/windows-hardware/drivers/
https://github.com/Microsoft/Windows-driver-samples

https://exploitreversing.com

4 | P a g e

doing the necessary cleaning, so there will be a memory leakage that only will be released in the next

reboot, which is also a standard issue while writing user mode programs. Unfortunately, there is an

extensive list of other programming hurdles. Of course, all of these concerns do not arise while reversing

code and understanding about internals, but they continue to be relevant aspects for differentiating user

mode and kernel mode code. Regardless of these difficulties, kernel drivers continue being an import stuff

while researching vulnerabilities and also used by criminals as an infection vector.

Another critical point is that, while writing and even analyzing a driver, we have to know that there are

different driver models that can used, which can interfere in our understanding about main characteristics:

▪ kernel drivers: Windows NT driver model and KMDF (Kernel-Mode Driver Framework).

▪ file system mini-filter drives: minidriver model.

▪ device drivers: KMDF (Kernel-Mode Driver Framework) and UMDF (User-Mode Framework Model),

and WDM (Windows Driver Model).

We need to choose a starting point, so explaining concepts related to the code, which will help while

reversing kernel drivers, could also be useful to initiate a brief discussion about the theme. Readers will

find over all kernel drivers the DriverEntry() routine, which is similar to the main function in C programs

that operate on the userland. This routine serves as a pivotal point to other functionalities called by the

driver. Actually, one of the main tasks performed by the DriverEntry routine is initializing structures and

resources that will be used by the driver at a later moment. In other words, it works like a midway point to

invoke other routines and prepare data structure for them.

Eventually, we also will find an unload routine that is associated with a driver object’s member named

DriverUnload, which is called automatically when the driver is unloaded and, as readers might expect, it is

responsible for performing cleaning tasks. I will be discussing about driver object, device objects and other

concepts in the next paragraphs, but for now you should know that a driver object is the parent of any

other object, and different objects such as timers, spinlocks, device objects and so on are included in this

list and, at the same way that happens for user mode application, synchronization is also a critical

component on the kernel side.

Drivers can be installed as service (sc create <driver name> type= kernel binPath= <driver path>) and, as

other services, an entry in created under HKLM\System\CurrentControlSet\Services. For sure, if Microsoft

did not sign this driver, it is necessary to setup the machine to booting in testing mode by executing bcedit

/set testsigning on followed by shutdown /r /t 0. Furthermore, whether you want to load the driver

without installing it, so there is the option to use OSR loader (available on

https://www.osronline.com/article.cfm%5Earticle=157.htm). Being honest, I haven’t used it for a long

time, but probably it still works for legacy drivers and older versions of Windows.

We should remember that there are three main different types of memory given by POOL_TYPE

enumeration (for legacy APIs) from wdm.h (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/ne-wdm-_pool_type) or POOL_FLAGS enumeration for new APIs

(https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/pool_flags) that are used by

drivers: Paged Pool (pages can be paged out), Non-Paged Pool (pages always are kept on memory) and

NonPagedPoolNx (pages always are kept on memory and don’t have execute permission). Additionally, it

makes sense to mention Session Paged Pool, which can be paged but it is session independent.

https://www.osronline.com/article.cfm%5Earticle=157.htm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_pool_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_pool_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/pool_flags

https://exploitreversing.com

5 | P a g e

Therefore, while analyzing kernel drivers, we will see routine invocations of several kernel specific memory

pool allocation functions like ExAllocatePool() (deprecated in Windows 10 version 2004),

ExAllocatePoolWithTag() (deprecated in Windows 10 version 2004), ExAllocatePool2

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepool2),

ExAllocatePool3 (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

exallocatepool3) and so on. It is a well-known fact that memory regions allocated with most of these

functions (deprecated and new ones) might have an associated tag, with up to four-byte value (usually in

ASCII) in reversing order, to label (tag) the allocated memory.

When a malicious driver infects a system and allocates kernel non-paged pool memory, we might have a

chance to track these regions of memory used by the threat by looking for a specific tag if it is using one,

although it is not so common nowadays. Even without using a specific framework like Volatility, readers

can track these pools through commands such as poolmon (from WDK) and !lookaside (on WinDbg).

An essential point about kernel drivers is to understand that a single driver does not do everything alone.

Actually, when an I/O request is sent by an application, there will probably be drivers organized in a stack,

which each one is responsible for receiving the request, doing something or not, and passing the request

down to the next driver. Thus, important concepts come up from this point. After drivers are loaded, each

one is represented by a driver object, which has the following structure:

[Figure 1] _DRIVER_OBJECT structure

A driver object holds vital information, which few of them are:

▪ DeviceObject: a pointer to device objects created by the driver (IoCreateDevice()).

▪ DriverExtension: a pointer to a driver extension that’s used by the driver to store the AddDevice

routine into DriverExtension → AddDevice field.

▪ DriverInit: the entry point, configured by the I/O Manager, to the DriverEntry routine.

▪ DriverUnload: the entry point to the Unload routine.

▪ MajorFunction: a pointer to a dispatch table which contains an array of entry pointers to driver

routines.

Drivers compose a driver stack, and each one is associated with a driver object. Each driver object contains

one or more device objects represented by the _DEVICE_OBJECT structure:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepool2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepool3
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepool3

https://exploitreversing.com

6 | P a g e

Relevant fields in this structure follow:

▪ Type: the value 3 in this field indicates that the given object is a driver object.

▪ ReferenceCount: I/O manager uses this field to track the number of opened handles associated to

the device object.

▪ DriverObject: this field holds a pointer to the driver object (DRIVER_OBJECT), which represents the

loaded image, as explained previously.

▪ NextDevice: this field holds a pointer to the next device object.

▪ AttachedDevice: this field contains a pointer to the attached device object, which typically is

associated to a filter driver (not always).

▪ CurrentIrp: this field contains a pointer to the current IRP if the drivers are currently processing and

whether it has a StartIo routine whose entry point was set up in the driver object. StartIo and IRP

will be briefly commented later.

▪ Timer: this field contains a pointer to a timer object.

▪ Dpc: a pointer to a DPC (Deferred Procedure Call) object for the driver object. DPC will be briefly

explained later.

While there are other notable members, these mentioned above are enough for now. Anyway, a device

object (_DEVICE_OBJECT) is a key component because it works as the interface between the client and the

driver. Many functions used by user mode applications points to a device object through symbolic links

(IoCreateSymbolicLink() -- https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-

wdm-iocreatesymboliclink) that points to a kernel object.

A small side effect in this context is that a symbolic link (for example: \\.\ExampleDevice) usually points to

some element under \Device directory (devices as \Device\ExampleDevice are created by calling

IoCreateDevice(): https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

[Figure 2] _DEVICE_OBJECT structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
file://///./ExampleDevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice

https://exploitreversing.com

7 | P a g e

iocreatedevice), which cannot be accessed from the user mode, so it is necessary to invoke

IoGetDeviceObjectPointer() to get the access to them (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-iogetdeviceobjectpointer).

About APIs mentioned in the last two paragraphs, we have the following one:

[Figure 3] IoCreateDevice()

A brief summary about its parameters follows:

▪ DriverObject: it holds a pointer to driver object, which is received as parameter of DriverEntry()

routine.

▪ DeviceExtensionSize: it represents the number of bytes reserved for the device extension of the

driver object. A device extension can be used to store private data structure associated to device,

but it is usually used with device drivers and not kernel drivers.

▪ DeviceName: optionally, it points to a buffer that holds the name of device object, as expected.

▪ DeviceType: it determines the device type, which is given by FILE_DEVICE_* constants. To add

them into IDA Pro as enumeration:

o Add the type library named ntddk64_win10 (SHIFT+11 and INS hotkeys).

o Go to Enumerations tab (SHIFT+F10), insert a new enumeration, choose “add standard

enum by symbol name” and pick up FILE_DEVICE_DISK.

[Figure 4] _FILE_DEVICE enumeration

(truncated)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iogetdeviceobjectpointer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iogetdeviceobjectpointer

https://exploitreversing.com

8 | P a g e

▪ DeviceCharacteristics: this parameter specifies one or more constants, but in the kernel driver’s

context, it will be zero (0) or FILE_DEVICE_SECURE_OPEN in most cases. Repeating the same steps,

we have done for DeviceType, but this time add FILE_DEVICE_SECURE_OPEN.

[Figure 5] _FILE_REMOVABLE enumeration

▪ Exclusive: this parameter determines whether the device object represents an exclusive device,

which controls and determines whether more than one file object can open the device.

▪ DeviceObject: this parameter holds a pointer to the DEVICE_OBJECT structure, which is allocated in

a non-paged pool.

Based on explained concepts, we have the following scheme:

▪ driver installed → driver object (_DRIVER_OBJECT) → one or more device objects

(_DEVICE_OBJECT).

So far, the only mentioned driver routine was DriverEntry, which has the following signature:

NTSTATUS DriverEntry(
 In PDRIVER_OBJECT DriverObject,
 In PUNICODE_STRING RegistryPath
);

The first parameter is a pointer to DRIVER_OBJECT and the second parameter is a pointer to RegistryPath

structure, which is a UNICODE_STRING, and that specifies the Parameters key of the driver in the Registry:

[Figure 6] _UNICODE_STRING structure

https://exploitreversing.com

9 | P a g e

Besides core tasks performed (actually, invoked) in DriverEntry, there is another still more relevant role

performed by the same routine that is the initialization of the Dispatch Routines, which is an array of

function pointers, and that makes part of the _DRIVER_OBJECT structure (MajorFunction member).

All indexes of this array have IRP_MJ_ prefix and, as expected, they represent the IRP major function

codes. Drivers must set entry pointers into this array, which set up associated and responsible routines for

handling and manipulating each one of planned operations and, finally, attending IRP requests.

We still have a pending list of concepts that need to be explained and cleared. An IRP (I/O Request Packet)

is a structure that represents an I/O request packet, and it is used by drivers to carry information and

communicate with other drivers. In other words, it works like a data format to be used in a well-defined

standard for communication between driver layers.

The IRP, defined in wdm.h file, is a really large structure and has many fields, but most of them are unions.

If the readers want to examine the struct using Internet, so the following reference could be interesting:

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_IRP

Personally, I prefer retrieving the _IRP structure from IDA Pro by performing the following steps:

1. open a PE format binary in IDA Pro

2. go to Type Libraries (SHIFT+F11)

3. add ntddk64_win10 or any other similar library (ntddk_win7).

Now go to Structures tab (SHIFT+F9) and add the standard structure named _IRP, as shown below:

[Figure 7] _IRP structure: header

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_IRP

https://exploitreversing.com

10 | P a g e

There are fields that provide us with important context and information about kernel driver operation,

which few of them will be explained as necessary, and need to be complemented with new concepts that

will be introduced later. Even it is not shown on the previous image, an IRP has fixed part containing the

header (caller’s thread ID, device object’s address, I/O status block and so on) that is used by I/O manager

to manage the IRP and a second part that is specific to each driver (I/O stack location), which holds

parameters such as function code of the requested operation and its respective context:

[Figure 8] IRP representation

We are going to make new notes on this topic later. Focusing on the IRP major codes topic again, there is a

series of IRP major codes that are used by drivers to call the respective dispatch routine in reaction to a

specific I/O request. These IRP major codes work as indexes in an array of function pointers.

As each kernel driver offers different functionalities, so they provide different dispatch routines to handle

I/O requests passing the IRP major codes shown below:

▪ IRP_MJ_CLEANUP: this IRP major code is used for invoking a DispatchCleanup routine when the

driver needs to release resources as memory and any other object whose respective reference

counter has reached zero, so it is an appropriate and recommended routine for cleanup that is not

related to file handles.

▪ IRP_MJ_CLOSE: this IRP major code is used for invoking a DispatchClose routine when the last

handle to a file object associated with a device object has been closed and released, and any

request has been closed or cancelled.

▪ IRP_MJ_CREATE: this IRP major code is used for calling a DispatchCreate routine to open a handle

to a device or file object. A well-known example occurs when a kernel driver calls functions like

NtCreateFile | ZwCreate, and an IRP_MJ_CREATE is sent to accomplish the open operation.

▪ IRP_MJ_DEVICE_CONTROL: this IRP code, which has an associated DispatchDeviceControl routine,

is a consequence of invoking DeviceIoControl(), which is responsible for sending a I/O control code

IRP HEADER

IO_STACK_LOCATION

IO_STACK_LOCATION

 IO_STACK_LOCATION

STATIC PART

DYNAMIC PART

https://exploitreversing.com

11 | P a g e

(it could be a well-known or a private one) to the target device driver. In most situations, the

routine will pass the IRP to the next lower driver, but there are exceptions. Readers should

remember that the first two members of DeviceIoControl() are associated to the referred purpose:

[Figure 9] DeviceIoControl

The first two parameters of this function are:

▪ hDevice: this parameter represents a handle to a device driver, which can be easily

retrieved by using CreateFile() (https://learn.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-createfilea).

▪ dwIoControlCode: this parameter specifies the control code for the operation. There are

multiple set of control codes organized according to the type of target device:

▪ cdrom: https://learn.microsoft.com/en-us/windows-hardware/drivers/storage/cd-

rom-io-control-codes

▪ communication: https://learn.microsoft.com/en-

us/windows/win32/devio/communications-control-codes

▪ device management: https://learn.microsoft.com/en-

us/windows/win32/devio/device-management-control-codes

▪ directory management: https://learn.microsoft.com/en-

us/windows/win32/fileio/directory-management-control-codes

▪ disk management: https://learn.microsoft.com/en-us/windows/win32/fileio/disk-

management-control-codes

▪ file management: https://learn.microsoft.com/en-us/windows/win32/fileio/file-

management-control-codes

▪ power management: https://learn.microsoft.com/en-

us/windows/win32/power/power-management-control-codes

▪ volume management: https://learn.microsoft.com/en-

us/windows/win32/fileio/volume-management-control-codes

▪ IRP_MJ_FILE_SYSTEM_CONTROL: as readers might expect, file system drivers commonly use this

IRP major code.

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows-hardware/drivers/storage/cd-rom-io-control-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/storage/cd-rom-io-control-codes
https://learn.microsoft.com/en-us/windows/win32/devio/communications-control-codes
https://learn.microsoft.com/en-us/windows/win32/devio/communications-control-codes
https://learn.microsoft.com/en-us/windows/win32/devio/device-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/devio/device-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/directory-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/directory-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/disk-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/disk-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/file-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/file-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/power/power-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/power/power-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/volume-management-control-codes
https://learn.microsoft.com/en-us/windows/win32/fileio/volume-management-control-codes

https://exploitreversing.com

12 | P a g e

▪ IRP_MJ_FLUSH_BUFFERS: this IRP major code means a request to the device to flush its internal

cache, and such code is used for invoking the DispatcFlushBuffers routine.

▪ IRP_MJ_INTERNAL_DEVICE_CONTROL: it is pretty similar to IRP_MJ_DEVICE_CONTROL, and

readers will see this code when another driver calls IoBuildDeviceIoControlRequest() or even

IoAllocateIrp(), for example. Basically, it can be interpreted as a code used for driver-to-driver

communication while IRP_MJ_DEVICE_CONTROL is used for application to driver communication.

Finally, it is used for invoking DispatchInternalDeviceControl routine.

▪ IRP_MJ_PNP: this code is used over a request for any Plug & Play operation (enumeration or

resource balancing, for example) and used for invoking the DispatchPnP routine.

▪ IRP_MJ_POWER: this IRP code is used by requests, through the Power Manager, to invoke the

power callback (DispatchPower routine).

▪ IRP_MJ_QUERY_INFORMATION: this IRP code is used for invoking the DispatchQueryInformation

routine, which usually gets meta-information about a file or even a handle. For example, this event

happens when a driver call ZwQueryInformationFile() (https://learn.microsoft.com/en-

us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationfile). Of course, the driver is

not required to handle this kind of request.

▪ IRP_MJ_SET_INFORMATION: this IRP code is sent by the operating system as a request

(ZwSetInformationFile()) to set metadata about a file or even a handle and, as in other cases, it

invokes the DispatchSetInformation routine.

▪ IRP_MJ_SHUTDOWN: this IRP code is handled by drivers that are responsible for mass-storage

devices with internal caches, and it is used for invoking the DispatchShutdown routine. As drivers

are organized in a stack, all intermediate drivers that are associated with mass-storage devices

need to be able to manage such requests. Of course, drivers must complete any transfer of data

that is currently in cache before finishing the shutdown request.

▪ IRP_MJ_SYSTEM_CONTROL: all drivers must provide a DispatchSystemControl routine that is

invoked to handle IRP_MJ_SYSTEM_CONTROL requests, and these requests are sent by

components of WMI when a user mode data consumer requests WMI data.

▪ IRP_MJ_READ: this IRP code is used for calling DispatchRead routine, which acts when application

makes requests (ReadFile() and ZwReadFile()) to transfer data from the device to the application.

▪ IRP_MJ_WRITE: this IRP code is used for invoking the DispatchWrite routine, which is used by

drivers that transfer data from the system to the associated device.

Thus, so far, we have few conclusions:

▪ a driver object (_DRIVER_OBJECT) holds one or more device objects (_DEVICE_OBJECT), which are

the main interface of communication between the application and driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationfile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationfile

https://exploitreversing.com

13 | P a g e

▪ APIs on user-mode refer to device objects as their parameters.

▪ To a kernel driver to become really useful it has to register Dispatch Routines to serve diverse types

of requests (user-land or kernel-land) that are done by sending one of IRP codes.

▪ In many public drivers, readers will find drivers implementing dispatch routines to handle userland

application’s calls such as ReadFile(), DeviceIoControl() and WriteFile(), for example.

▪ The IRP structure (_IRP) holds the necessary information from a request and it is used to carry

information and communicate with drivers between layers in the driver stack.

▪ The IRP’s content can hold common information for all drivers in the stack, but it also carries

private information for specific drivers over the same stack.

▪ A device object is created by drivers through IoCreateDevice() (exported by I/O manager).

▪ Observing Figure 2, a device object (_DEVICE_OBJECT) is linked to the next one through the

NextDevice member.

As a summary, the general execution flux established by the I/O manager is:

▪ Accepting requests from different applications.

▪ For each request it creates an IRP to represent that request.

▪ Afterwards, it sends each request to its respective drivers.

▪ It manages and tracks these IRPs until they are completed.

▪ Finally, it returns the result of the operation to the application that made the request.

However, few points are still pending to be explained so far:

▪ What are IRQLs and what are available values?

▪ What is a StartIO routine?

▪ What is DPC and which is its purpose?

▪ How are IRPs passed and stored from an upper kernel driver to a lower one?

IRQL (Interrupt Request Level) is a Windows mechanism to manage interrupts according to the respective

level of importance in the operating system context. When I mention interrupts (IRQ), readers probably

remember that there are hardware (asynchronous) and software interrupts (synchronous), and Windows

creates a map assigning a priority (IRQL) to a given interrupt source emitted by a device, although this map

is different from CPU to CPU. Thus, each CPU has an associated IRQL value, and it could be interpreted as a

particular register.

Anyway, the IRQL is represented by a number, and rule is that any code running with a lower IRQL can’t

preempt a code running with a higher IRQL, and the kernel prioritizes pieces of code such as kernel drivers

over other ones according to the higher level of priority.

We should note that IRQL (Interrupt Request Level) is not equal to IRQ (Interrupt Request), which is

related to hardware, and it is also not equal to thread priority because thread priority is an individual

thread’s property.

The usual IRQL level are:

▪ PASSIVE LEVEL (value 0): at this level, no interrupt vectors are masked, and it is the level where

most threads usually run. It is the normal IRQL. Actually, most kernel driver routines such as

DriverEntry(), Unload(), AddDevice() as well as dispatch routines run at this level.

https://exploitreversing.com

14 | P a g e

▪ APC LEVEL (value 1): it’s the level used by APC (Asynchronous Procedure Calls), which is a function

that executes in the context of a thread. In few words, each thread has an own APC queue and

when an application sends an APC to a thread by invoking QueueUserAPC() (actually, a wrapper to

NtQueueApcThread() -- https://learn.microsoft.com/en-

us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc), it passes the

address of the APC function as argument and an interrupt is issued by the system. Therefore,

readers can understand that queueing an APC works as a request for the thread calls/invokes the

given APC function. The application is only able to deliver an APC to a thread when this thread is in

alertable state (it called SleepEx(), WaitForSingleObjectEx(), WaitForMultipleObjectsEx() and so

on), and this APC from the thread’s queue is executed when the thread transits from alertable state

to running state. The same concept is used when malware threats do APC injection, which is only

possible when the target thread is in alertable state. At the end of day, APC is a subtle technique

that makes it possible to execute a callback method (the function passed as argument to the APC)

in an asynchronous way. APCs can be listed by using !apc extension on WinDbg.

▪ DISPATCH LEVEL (value 2): it’s the higher IRQL associated to software interruption. DPC (Deferred

Procedure Call) runs at this level as well as the thread dispatcher, and it is responsible for the post-

processing of a driver after a first, critical and short job has been performed by the ISR (Interrupt

Service Routine), which is registered (IoConnectInterrupt() -- https://learn.microsoft.com/en-

us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioconnectinterrupt) by a device driver, runs at

DIRQL (Device Interrupt Request Level), and it is responsible for a really minimal work before

queueing (KeInsertQueueDpc() -- https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-keinsertqueuedpc) a DPC that will be executed when the IRQL

drops to a lower level. Furthermore, in the kernel driver’s context, routines such as StartIo(),

IoTimer(), Cancel(), DpcForIsr(), CustomDpc() and so on also run at this level. Finally, it is

appropriate to mention that any thread waiting on kernel objects (events, semaphores, mutex…) at

this level causes a system crash.

▪ DIRQL (value 3 and higher): these levels are related to hardware interrupts.

A kernel code, which can be interrupted by other kernel code with higher IRQL, is able to change the

current IRQL (from the current CPU) by calling functions such as KeLowerIrql()

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kelowerirql) and

KeRaiseIrql() (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

keraiseirql). In the order side, it is not possible to raise the IRQL from a user mode application.

Although the APC topic is really attractive, the only difference between PASSIVE_LEVEL and APC_LEVEL is

that a process running at APC_LEVEL cannot get interrupted by APC interrupts. While explaining about high

level drivers (not associated to devices) that process IRP, we will be focused on PASSIVE_LEVEL and

DISPATCH_LEVEL to avoid getting distracted with other topics.

Anyway, I know that professionals usually ask about the IRQL and respective thread context when one of

commented dispatch routines (callbacks) is called, so I retrieved a list from Microsoft

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/dispatch-routine-irql-and-thread-

context) that could help you:

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioconnectinterrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioconnectinterrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keinsertqueuedpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keinsertqueuedpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kelowerirql
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keraiseirql
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keraiseirql
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/dispatch-routine-irql-and-thread-context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/dispatch-routine-irql-and-thread-context

https://exploitreversing.com

15 | P a g e

[Table 1] Dispatch routines, IRQL and Thread’s context (credit: Microsoft)

According to experience, multiple crashes caused by drivers come from a wrong action executed at a

higher level than possible to start a given operation. Furthermore, crashes also happen because such

drivers incorrectly assume to be in a certain thread context that, actually, is not true or even possible.

Analyzing the provided table above, it is quick to realize that most dispatch routines are called from

PASSIVE_LEVEL IRQL and from a non-arbitrary context. That’s the reason that the recommended approach

is not assuming a certain context unless you are sure about which context is invoking the thread. Of

course, as a security researcher this concern is lower because we are looking for a vulnerability or even

reversing the code of malicious drivers, but for programmers these concepts exposed here are really

important.

Returning to our main discussion, readers can check basic information on drivers according to what we

have discussed so far by using WinDbg/WinDbg Preview (that is available on Microsoft Store):

https://exploitreversing.com

16 | P a g e

[Figure 10] Listing device names under \Device (truncated output)

The output above is based on Windows 11. Just in case readers don’t know how to install WinDbg, it comes

from Windows SDK installation. Actually, if readers are interested in developing kernel and minifilter

drivers, so the recommendation is to install few components in the following order:

▪ Visual Studio: https://visualstudio.microsoft.com/downloads/

▪ Windows SDK: https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/.

▪ Windows WDK: https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

If readers want to use WinDbg Preview, there are two methods to install it:

▪ From Microsoft Store: https://apps.microsoft.com/store/detail/windbg-preview/9PGJGD53TN86

▪ From command line: winget install windbg

Personally, I always configure the following environment variable: _NT_SYMBOL_PATH=

srv*c:\Symbols*http://msdl.microsoft.com/download/symbols

WinDbg might take a long time to show the complete list of device names, but the idea is getting a list of

devices registered under \Device directory and, from this point, collecting additional information about a

specific driver. As we have the object address given by the output above, our next step is getting the

driver’s name and associated device objects to this driver. Remember: there can be one or more device

objects attached to a driver object. Thus, choosing vmmemctl device as example, execute:

https://visualstudio.microsoft.com/downloads/
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://apps.microsoft.com/store/detail/windbg-preview/9PGJGD53TN86

https://exploitreversing.com

17 | P a g e

https://exploitreversing.com

18 | P a g e

[Figure 11] Getting basic information about the dispatch routines.

From these commands we got:

▪ the list of device objects associated with the driver.

▪ summarized information about the given device object.

▪ the list of the dispatch routines associated to the driver object.

If readers are wondering about how to list any pending IRPs, the WinDbg offers a command too:

[Figure 12] Listing pending IRPs (truncated output)

https://exploitreversing.com

19 | P a g e

We have learned that a basic kernel driver likely will have relevant routines, mechanisms and objects that

are critical for its perfect operation:

▪ DriverEntry() routine, which is called from IRQL == PASSIVE_LEVEL, and responsible for providing

an entry point to driver routines, initializing or even creating object, allocating non-paged or paged

memory using ExAllocatePoolWithTag() (for example) or retrieving a key-information from

Registry. Furthermore, it can also be used to call PsCreateSystemThread routine, which creates a

system thread to execute in kernel mode.

▪ Unload() routine, which is responsible for freeing resources, and that is a strong requirement for

WDM (Windows Driver Model) drivers. The I/O manager calls the Unload routine whether there is

not any reference or pending IRP request associated to device objects of the driver. Readers may

find a series of functions inside this routine such as ExFreePool(), IoDeleteSymbolicLink(),

PsTerminateSystemThread(), IoDeleteDevice() and so on.

▪ An associated device object (remember: the device object is the actual interface of communication

with the driver).

▪ A symbolic link (created by IoCreateSymbolicLink(): https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink) associated to the device object.

▪ We will have kernel drivers which holds one ore more dispatch routines handling function codes

such as IRP_MJ_CLOSE, IRP_MJ_READ, IRP_MJ_CREATE or IRP_MJ_DEVICE_CONTROL,

IRP_MJ_INTERNAL_DEVICE_CONTROL, IRP_MJ_SYSTEM_CONTROL, because these routines are

usually essential to most of kernel drivers, and in different cases we will have the opportunity to

work with other ones like IRP_MJ_SET_INFORMATION, IRP_MJ_CLEANUP and

IRP_MJ_SHUTDOWN, for example. If readers are programming then system functions/macros such

as ObDereferenceObject (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-obdereferenceobject), PsLookupThreadByThreadId

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-

pslookupthreadbythreadid), and IoCompleteRequest (explained below) will be very useful.

▪ A dispatch routine might have nothing else to do with a driver, so it would complete an IRP input

with a simple STATUS_SUCCESS, but it could be suitable in contexts and scenarios. For example,

DispatchClose routine (handles IRP_MJ_CLOSE I/O function code) could be responsible for

notifying that all references to a given file were removed. Eventually, drivers that never could be

unavailable, and the DispatchClose routine wouldn’t be called. At the same way, DispatchCleanup

routine (handles IRP_MJ_CLEANUP I/O function code) is used to perform cleaning operations after

handles of a given object have been released and, for each IRP request, this routine is composed by

operations such as setting Cancel routine’s pointer to NULL, cancelling all IRP related requests (for

example, associated to the object that has been closed) that are still in the queue and, finally,

calling the IoCompleteRequest() routine to complete the IRP and returning STATUS_SUCCESS.

Maybe, the most important lesson is that, although few dispatch routines will be seen in most of

software drivers, it is recommended not assuming whether one of them is more important or even

critical than other one because each driver has a particular goal and different role.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obdereferenceobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obdereferenceobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-pslookupthreadbythreadid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-pslookupthreadbythreadid

https://exploitreversing.com

20 | P a g e

Of course, the list of routines mentioned above is regarding only a basic software kernel driver, which is

part of the goal of this article, but we could explain much more about them. For sure, other routines might

be relevant for readers interested in writing a device driver such as AddDevice, StartIo, ISR, DPC routines

and so on.

As happens with userland applications, the I/O manager also manages synchronous and asynchronous

operations and as expected, over an asynchronous operation the kernel driver doesn’t have any obligation

to process IRP requests in a specific order. In other words, a kernel can start processing the next IRP

request without having finished the previous one. From this point, the kernel driver can pass down the IRP

to the next drivers in the stack and continue the request processing.

A concept that I have not mentioned yet is completion routine, an optional feature/function, which is

called by IoCompleteRequest() function, and that performs an important role over the kernel processing

because a driver can register a completion routine (IoCompletion() routine --

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocompleterequest) that

will be invoked by I/O manager soon a kernel driver has finished the processing an IRP.

The IoCompleteRoutine() makes the reverse path by sending back the IRP to the upper layer driver in the

driver stack. Thus, in a hypothetical asynchronous scenario, it is likely having a kernel driver processing the

next IRP while the I/O manager calls the completion routine from other driver that finished its IRP

processing.

Drivers provide the status of an operation within the I/O status block of IRP. Additionally, drivers can keep

the status of the operation inside the driver extension, which is really useful in the context with two or

more drivers that are part of the same stack. When a device object is created through IoCreateDevice

function (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

iocreatedevice), the DriverExtensionSize parameter is used to prepare the driver for scenarios like

explained in this paragraph. A driver extension can be created or initialized by

IoAllocateDriverObjectExtension(), which is invoked by DriverEntry() routine.

During the usage of the concept of driver stack, I am not assuming a specific number of drivers in this stack

to keep the explanation wide enough. However, it is suitable to explain that whether any driver, which

makes part of the stack, doesn’t receive a handle, or even pass down the IRP to next driver through the

right way, the system can (and probably will) crash. Additionally, and as a side note, so far, we have mostly

explained and handled I/O operation as being IRP requests. Nonetheless, there is another type of

operation called Fast I/O that doesn’t generate IRP and goes to specific drivers to complete the request,

but it is not the moment to discuss this kind of operations in this section.

Returning to outstanding points, it is time to provide a concise explanation about ISR and StartIo routines.

In general, hardware interrupts are associated with a priority (IRQL, as we learned), the device registers

(through IoConnectInterruptEx / WdmlibIoConnectInterruptEx routines) one or more ISR (Interrupt

Service Routine) to handle interrupts. Drivers associated to physical devices, which generate interrupts,

need to have one ISR, at least. Once again, threads have an associated priority while CPUs have an

associated attribute named IRQL.

In other words, each time an interrupt is generated to that specific device, the system calls an ISR, which

could be InterruptService or InterruptMessageService routines. Anyway, it will be executed with the same

associated IRQL that the request arrived (masking interruptions at lower level) and, if the IRQL is zero (for

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocompleterequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice

https://exploitreversing.com

21 | P a g e

example) before the ISR, then it will be raised to the same higher level of the interrupt (there isn’t context

switch when IRQL is 2 or higher, and accessing paged memory causes system crash) and, after the ISR

completes, the IRQL will return to the previous level. Additionally, it is possible to enable or disable an ISR

by calling IoReportInterruptActive() or IoReportInterruptInactive() functions, whose references follow

below:

▪ https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

ioreportinterruptactive

▪ https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

ioreportinterruptinactive

ISR is short and fast. In few words, it should handle the interrupt (stop the interrupt), gather and save the

state (context), and queues a DPC (DpcForIsr or CustomDpc routines) through IoRequestDpc or

KeInsertQueueDpc routines, respectively, soon the IRQL drops below DISPATCH_LEVEL.

The DPC will be responsible for managing the I/O operation that will be conducted at a lower level than the

ISR. The ISR does only a little part of the I/O processing (the initial request), and the heavy work is left to

the DPC (Deferred Procedure Call), which has the assignment to complete the I/O operation, queue the

next IRP (ensuring the next I/O operation) and, as explained, finish the current IRP when it is possible.

The system provides a DPC object for each device object, and the first (and default) routine is DpcForIsr().

In case of driver to need to create additional DPC objects then CustomDpc routines are associated to these

new DPC objects. Both DpcForIsr and CustomDpc routines are called in arbitrary DPC context at

IRQL_DISPATCH_LEVEL (IRQL value 2).

The IoInitializeDpcRequest() routine is responsible for registering the DpcForIsr routine, receiving a

pointer to a device object represented by DEVICE_OBJECT structure (remember: a DPC object for each

device object) and also receiving a pointer to the provided DpcForIsr routine, as shown below:

 [Figure 13] IoInitializeDpcRequest routine

To register a CustomDpc routine associated with a device object, the driver must call KeInitializeDpc

routine. The first parameter is a pointer to a KDPC structure, the second parameter is a pointer to the

CustomDpc routine, and the last parameter holds the context. It is timely to highlight that CustomDpc

routine is not associated with the DeviceObject, as shown below:

[Figure 14] KeInitializeDpc routine

The IoRequestDpc routine is called by ISR for queueing the DpcForIsr routine to be executed:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioreportinterruptactive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioreportinterruptactive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioreportinterruptinactive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioreportinterruptinactive

https://exploitreversing.com

22 | P a g e

[Figure 15] IoRequestDpc routine

The Irp parameter is a pointer to the current IRP and Context parameter is passed to the routine.

Another routine to queue a DPC for execution is KeInsertQueueDpc, which has as argument a pointer to

KDPC routine and two arguments dedicated to context, as shown below:

[Figure 16] KeInsertQueueDpc routine

According to https://www.vergiliusproject.com/ , the representation of the _KDPC structure is the

following one:

//0x40 bytes (sizeof)
struct _KDPC
{
 union
 {
 ULONG TargetInfoAsUlong; //0x0
 struct
 {
 UCHAR Type; //0x0
 UCHAR Importance; //0x1
 volatile USHORT Number; //0x2
 };
 };
 struct _SINGLE_LIST_ENTRY DpcListEntry; //0x8
 ULONGLONG ProcessorHistory; //0x10
 VOID (*DeferredRoutine)(struct _KDPC* arg1, VOID* arg2, VOID* arg3, VOID* arg4); //0x18
 VOID* DeferredContext; //0x20
 VOID* SystemArgument1; //0x28
 VOID* SystemArgument2; //0x30
 VOID* DpcData; //0x38
};

[Figure 17] _KDPC structure

Although it is not the focus of this introduction about kernel drivers, there is another type of DPC named

Threaded DPC, which executes at PASSIVE_LEVEL, and that can be preempted by a normal DPC, but not

by other threads. Analyzing this feature from a strict point of view, it presents a good alternative because

as normal DPC cannot be preempted by other normal DPC, a system with multiple queued DPCs might

https://www.vergiliusproject.com/

https://exploitreversing.com

23 | P a g e

present a big latency and, eventually, cause performance issues. Therefore, Threaded DPC, which is

enabled by default (HKLM\System\CCS\Control\SessionManager\Kernel\ThreadDpcEnable), might be

interpreted, in most cases, as a better choice than normal DPC (but it is not a rule).

Beside DPC’s usage with ISR, DPC can be also used with kernel timers that have a remarkably similar

behavior to other objects like semaphores, event, mutex, events and so on, as any driver can use these

objects during synchronization tasks since it happens in IRQL==PASSIVE_LEVEL and non-arbitrary context.

Independently of which of mentioned kernel objects is being taken, we can use typical waiting routines

such as:

▪ KeWaitForSingleObject (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-kewaitforsingleobject)

▪ KeWaitForMultipleObjects (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-kewaitformultipleobjects).

Getting into quite few details, kernel timer is associated and represented by a KTIMER or EX_TIMER

structure, and it is used to time out operations of kernel routines or even scheduling new operations

(other researchers and programmer might be use the term “actions” or “tasks”) to be executed from time

to time, so presenting well-established periodic behavior.

Kernel timers based on KTIMER structure can be set by using KeSetTimer (the timer object must have

been initialized using KeInitializeTimer/KeInitializeTimerEx routine, and its DPC also must have been

initialized by calling KeInitializeDPC routine) to set absolute or even relative interval, which after it expires

it is set to signaled state.

[Figure 18] KeInitializeTimerEx

[Figure 19] KeSetTimer

Signaled state for timers indicates, as a flag is up, that the timer is done and any DPC object that has been

inserted in the DPC queue can execute as soon it can (during a red team operation, it would be the

moment to execute the injected code done through DPC injection).

To set a recurring time (to attribute the periodic behavior), use KeSetTimerEx routine. If the timer is based

on EX_TIMER structure (it must be allocated using ExAllocateTimer routine and can be deallocated using

ExDeleteTimer routine), then the ExSetTimer routine can be used to start a timer operation and the

expiration time. The prototype of ExAllocateTimer function is shown below:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kewaitforsingleobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kewaitforsingleobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kewaitformultipleobjects
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kewaitformultipleobjects

https://exploitreversing.com

24 | P a g e

[Figure 20] ExAllocateTimer routine

Therefore, a CustomTimerDpc routine can be associated with a timer to be executed as soon as possible

when the timer is signaled. The two types of timers are notification timer (once it signaled it means the

the specified time has been reached, all threads have a green-light to proceed, and the state of the timer

stays as signaled until it is explicitly reset) and synchronization timer (once it signaled, it is kept in signaled

state until a thread waiting on it is released, and it is automatically reset to non-signaled state). If a driver

needs to disable a timer, there is the option to call KeCancelTimer routine (for timers based on KTIMER

structure) or ExCancelTimer (for timers based on EX_TIMER structure).

According to what we have reviewed so far, the DPC routine will run when the IRQL drops below

DISPATCH_LEVEL or even when a configured timer expires. No doubts, this explanation could be

extended over other kernel dispatcher objects such as mutex, events, semaphores or even other

techniques like work items and spin locks, but all these concepts can be easily learned from any resource

as Microsoft Learn (MSDN) website and books mentioned at the beginning of this article.

Returning to our planned agenda (again), we have pending items to be explained, at least, so it is time to

briefly comment about I/O stack locations as well offers a supplemental view about IRP being dynamically

passed down to other layers.

As we already know and explained previously, all I/O requests to drivers at a lower level on the driver stack

are based on IRP (I/O Request Packet). The I/O Manager allocates an array of I/O stack locations

(IO_STACK_LOCATION structure) for every configured IRP (there is a parameter named StackSize in

IoAllocateIRP function to specify the number of I/O stack locations), and each element of this array is

associated with a driver in the driver stack. In other words, the number of I/O stack locations from this

array can be translated to the number of drivers in the driver stack.

 [Figure 21] IoAllocateIrp routine

Readers could use IoAllocateIrpEx function, which has three parameters, and the first one allows us to

pass a pointer to the device object. In this case, if the DeviceObject parameter is set to

DEVICE_WITH_IRP_EXTENSION, the call is intended to allocate space for IRP extension.

As each driver is the owner of the I/O stack location in the IRP, this driver can invoke

IoGetCurrentIrpStackLocation routine, which returns a pointer to the caller’s I/O stack location in the IRP,

to get driver specific information about the I/O operation. Actually, the I/O operation’s information is

divided between the IRP header and the current I/O stack location.

https://exploitreversing.com

25 | P a g e

[Figure 22] IoGetCurrentIrpStackLocation routine

Each driver of the driver stack is responsible for configuring the next lower driver’s I/O stack location (I/O

stack location that makes part of the IRP structure) by calling IoGetNextIrpStackLocation routine, which

grants access to the lower I/O stack location exactly to accomplish this set up, and as readers have realized,

it is a critical task in a stack of drivers. Therefore, the I/O manager sets up the IRP header and the first I/O

stack location, and all of the next ones (for each driver) are set up by the driver immediately above.

 [Figure 23] IoGetNextIrpStackLocation routine

Another possibility that should be mentioned is that a driver could be satisfied with the IRP processing

and no longer interested in making further changes. Therefore, it would call IoSkipCurrentIrpStackLocation

macro to set for the next driver in the stack exactly with the same IO_STACK_LOCATION structure that the

current driver received.

These I/O stack locations are useful for storing context about an operation such as an I/O completion

routine (registered by calling IoSetCompletionRoutine or IoSetCompletionRoutineEx functions), and it will

be called after IRP having been processed by a lower driver, allowing the I/O completion routine to

perform cleanup tasks, for example.

 [Figure 24] IoSetCompletionRoutine

The CompletionRoutine argument is a pointer to an IoCompletion routine, which is called at IRQL equal or

lower than DISPATCH_LEVEL, to be invoked when the immediate lower driver to complete the IRP

processing. The second parameter is a pointer to the IO_COMPLETION_ROUTINE:

[Figure 25] IoCompletionRoutine

https://exploitreversing.com

26 | P a g e

It is really crucial to underscore that I/O completion routine can be registered and configured to any

driver in the driver stack, except the lowest one because each driver stores the completion routine from the

driver immediately above in the driver stack inside its I/O stack location.

Additionally, IoCompletion routine of a driver can be executed in two different moments or conditions: in

an arbitrary thread (thus, it is not possible to know the thread in advance) or even inside a DPC context.

Thus, after a kernel driver has completed the IRP, it invokes IoCompleteRequest routine , which is usually

called from the DpcForIsr routine) to notify that everything is done. Afterwards, the I/O manager verifies

whether the upper drivers offer an IoCompletion routine (as we described) and calls one by one, from the

immediate upper driver up to the highest driver. After everything has been done (all drivers in the stack

completed their IRP processing), so the I/O manager returns a result to the caller application.

The remaining question is: how does the driver forward the IRP to the next lower driver in the stack? It

performs this task by calling IoCallDriver, which is a macro wrapping IofCallDriver routine that accepts two

parameters such as DeviceObject (a pointer to the target device object) and Irp (a pointer to IRP):

[Figure 26] IoCallDriver routine

Now we have a very brief idea of the communication between drivers through the stack, we need to return

to the main idea in the communication between application and drivers that is the real information (data)

transferred during the communication, so it is appropriate to remember about the IRP structure again:

[Figure 27] IRP structure

https://exploitreversing.com

27 | P a g e

As I mentioned previously, I would comment some fields from IRP structure according to the need, and as

we are interested in understanding the data exchange between applications and drivers, so some of these

fields are relevant because, in general, applications can interact with a driver by writing (WriteFile:

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile), reading (ReadFile:

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile) or even controlling

(DeviceIoControl: https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-

deviceiocontrol) a device or another driver. However, it does not matter the operation, there will be some

transfer of information from application to device driver or vice-versa, and the buffer holding the

information must be pointed during the operation and, this time, other fields of IRP show their

importance:

▪ UserBuffer: this field contains a pointer (address) to a user buffer. Actually, this buffer is an address

of an output buffer, and is used in particular conditions of I/O control code (METHOD_BUFFERED or

METHOD_NEITHER) and respective major function code (IRP_MJ_DEVICE_CONTROL /

IRP_MJ_INTERNAL_DEVICE_CONTROL), as we will learn soon.

▪ SystemBuffer: this field holds a pointer to a system buffer (non-paged pool buffer), which it will be

useful for drivers using buffered I/O and the purpose of the given buffer is determined by the

associated IRP Major code such as IRP_MJ_READ (buffer will be used for reading from a device or

driver), IRP_MJ_WRITE (it will used for writing to a device or driver) and IRP_MJ_DEVICE_CONTROL

(buffer will be used for sending and receiving control data to/from a device or driver).

▪ MdlAddress: this field points to an MDL (Memory Descriptor List), which is defined by a MDL

structure, and followed by an array that describes physical page layout for a virtual memory buffer.

There is a series of functions to work with MDLs such as MmGetMdlVirtualAddress (gets the virtual

address of the I/O buffer described by the MDL), MmGetMdlByCount (retrieves the size of the I/O

buffer), IoAllocateMdl (this function allocates an MDL), IoFreeMdl (this function frees a MDL),

MmInitializeMld (this functions formats a non-paged memory block as an MDL),

MmBuildMdlForNonPagedPool (to initialize the mentioned array following the MDL structure) and

many other ones.

An important aspect to realize is that, regardless of the involvement of any field above, access to any

provided buffer is always controlled by system rules (including security aspects), and eventually a broken

rule will lead to a system crash. For example, accessing a user buffer can be done only from the context of

an application thread (IRQL==0) requesting this access. Nonetheless, associated functions such as DPC or

Start IO can execute from any thread (arbitrary context) where the provided address is meaningless

(different addresses spaces) and IRLQ == 2, which accessing user page is not allowed because part of the

buffer might have been paged out. Unfortunately, not even the dispatch routine might not to be reliable

due to the fact that, although it runs at the same context of the requesting thread and initially at IRQL == 0,

eventually it might run at IRQL == 2 (or higher), over an IRP activity between drivers in the stack.

Therefore, the I/O manager provides us two approaches to access the provided user buffer in a safe way:

▪ Buffered I/O

▪ Direct I/O

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol

https://exploitreversing.com

28 | P a g e

Most of the time, the Buffered I/O method should be used for interactive services transferring a small

amount of data (likely 4 KB or less) between application and drivers. As most of operations are reading or

writing (IRP_MJ_READ and IRP_MJ_WRITE requests, respectively), so a driver selects this method of

operation when the Flag member of the Device Object (DEVICE_OBJECT structure – check the nineth field

of Figure 2), provided by the IoCreateDevice(), is set as DO_BUFFERED_IO (actually Flag member works as

an OR operation). If the driver needs to handle or execute I/O device control operations through

DeviceIoControl function (IRP_MJ_DEVICE_CONTROL/IRP_MJ_INTERNAL_DEVICE_CONTROL requests), so

the IOCTL code’s value must mirror this method by using METHOD_BUFFERED as its TransferType value.

Buffered I/O operations happen by allocating a buffer with the size of the user buffer inside for an

allocated non-paged pool (ExAllocatePoolWithTag / ExAllocatePool2) and this new address is stored as a

pointer into IRP (specifically, in SystemBuffer member from AssociatedIrp field). Afterwards, it allows

access to this new allocated buffer to the driver and there is no further concern because as the buffer is

stored in a non-paged pool, so driver doesn’t run any risk of trying to access paged-out data. Additionally,

as the address is in the kernel space, it is valid from any process and, better yet, the driver does not need

even to lock it before accessing it. Once the non-paged buffer has been created, data can be copied (by I/O

manager) from the user buffer into this new non-paged buffer for IRP_MJ_WRITE requests or copied from

this new non-paged buffer to user buffer for IRP_MJ_READ requests.

Direct I/O operations, which is recommended for cases in which there is a bigger amount of data to be

transferred, presents a different approach from Buffered I/O. Instead of proposing a new buffer in the

non-paged pool as is done for Buffered I/O, this technique offers directly access to the buffers, so

improving the performance because there is not the overhead in first copying data to a new-created buffer

to be consumed afterwards. Apparently, it would be a problem because, as we explained previously, the

meaning of an address is only valid to a given process address space, but the mechanism is different. When

the buffer is created by the user application, the I/O manager creates an MDL, which describes this buffer.

Actually, the content of the buffer might be scattered over different physical places in the memory, and

the created MDL represents this set of places as a one-piece in the virtual memory world. In another

words, MDL works as a kind of mapping of one virtual memory to one or more physical address ranges.

Soon after the MDL has been associated with the user buffer, the I/O manager checks whether such user

buffer is accessible and locks it (making it resident) on memory (non-paged memory) by calling

MmProbeAndLockPages (defined in wdm.h), which accepts the MDL as first argument, and make sure that

the content of the virtual memory pages will be not freed and relocated any time:

[Figure 28] MmProbeAndLockPages function

The second parameter (AccessMode) tells the mode used to check for the arguments (KernelMode or

UserMode) and the third parameter indicates the type of the planned operation (purpose) that will be

occurring while accessing the virtual memory buffer through MDL such as IoWriteAddress, IoReadAddress

or even IoModifyAddress.

https://exploitreversing.com

29 | P a g e

The user memory buffer will only be unlocked whether the I/O Manager calls the MmUnlockPages

function after the driver having completed the IRP processing.

Having created the MDL, the I/O Manager fills the IRP → MdlAddress field with the pointer to the pointer

(address) of the MDL. If the device is performing a DMA operation, it is done because device drivers

working with DMA operations require only physical addresses. However, it is not our case because we are

interested in accessing the buffer content. Thus, we have to map the provided buffer with an associated

MDL to a non-paged system address, and this address is retrieved by calling

MmGetSystemAddressForMdlSafe() with the MDL’s address as first argument. This function returns a

pointer to a non-paged virtual address for the buffer represented by MDL. Therefore, we have exactly what

we need: a non-paged system address that can be accessed from any process/thread (arbitrary context)

and any IRQL because as it is locked on memory and cannot be paged out, so a system crash will never

happen even accessing it from IRQL == 2 or higher.

There is a third option named Neither I/O, which is not managed by the I/O manager, and, in this case, the

buffer management is performed (ProbeForRead and ProbleForWrite functions) and accessed from the

same context of requesting thread because the original address of the buffer is passed into the IRP, which

will be used by the driver itself. Any broken rule likely will cause a system crash. It is not easy to manage

the necessary requirements to do all these tasks without the I/O manager and, at the end of the day, the

driver itself will have to perform manually the same tasks on his own, which would be done by the I/O

manager.

In the real world, and as I explained previously, there are writing, reading and device control operations.

The first two have been covered Buffered I/O and Direct I/O operations, but while working with I/O device

control (IRP_MJ_DEVICE_CONTROL) there is the information that is provided in the control code., which is

usually defined by driver through the CTL_CODE(), which is a macro with the following prototype:

▪ void CTL_CODE(DeviceType, Function, Method, Access);

A fast decryption of the parameters follows:

▪ The first parameter specifies that DeviceType, but as we are interested in kernel drivers, it is zero. If

readers are looking for the possible used device types here, so they can be found on

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types.

▪ The second parameter contains the IOCTL function value, which will be used and available for user

mode applications, so it must be used with IRP_MJ_DEVICE_CONTROL requests. If it used by only

kernel-mode components, so it must be used with IRP_MJ_INTERNAL_DEVICE_CONTROL requests.

▪ The third parameter contains the method code about how the buffers are passed

(METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT and METHOD_NEITHER).

▪ The fourth and last parameter specifies the operation: FILE_ANY_ACCESS (commonly used because

works in both directions), FILE_WRITE_ACCESS (from user application to the driver) and

FILE_READ_ACCESS (from the driver to the user application).

 We finished our brief review about kernel drivers, and it is time to review filter drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types

https://exploitreversing.com

30 | P a g e

5. Filter drivers review

Explaining concepts about kernel drivers and file system filter drivers always demands dozens of pages, but

it’s a good opportunity to touch these themes even without including too many details.

File system filter drivers are not device drivers, and the general idea of file system filter drivers is to offer

supplemental functionality to typical file system operations such as opening files, creating files, reading,

and writing file, and so on, while device drivers are usually associated a hardware device (except in case of

software kernel drivers as we learned previously in this article).

No doubt, there are many common things like IRPs (I/O Request Packets) for communication, callback

methods, IOCTLs and so on, which we can also use here and, eventually, adapt concepts to explain

minifilter driver functionality. Minifilter drivers are able to filter and intercept IRPs, fast I/O (synchronous

I/O operations, where data are transferred between given user buffer and the system cache without

suffering file system or storage driver interference) and file system callback operations.

Filter drivers are used to customize / modify operations related to the file system and, in general, file

system filter drivers are used to intercept, monitor and even modify requests to the file system, besides

eventually extending and replacing a current functionality.

Thus, as expected, you will find file system drivers and mini-filter filesystem drivers in contexts where

intercepting and monitoring are the main objective as multiple security defense products such as

antivirus, EDR, backup programs, and so on, and such fact is not a surprise, and it is pretty cool.

On Windows there are two filter system filter models that are the minifilter model, which is supported by

the Filter Manager, and the legacy file system filter model. The minifilter model is a much better choice to

be followed because it allows to unload the minifilter driver (FilterUnload() on user-mode,

FltUnloadFilter() on kernel mode and even using fltmc command, as we will learn soon) and enables

communication between a user mode application and the own minifilter driver, for example. In addition, it

also permits to lock/stick on on a specific type of operation through of the usage of callbacks (definitions

will come on the next pages) and as shown below, there is the option to control the loading order through

a concept its respective altitude (another term that will be explained).

File system filter services are available through the Filter Manager (represented by the same fltmgr.sys file

mentioned above), which are enabled when the provided minifilter is loaded, and it makes the

programming task simpler (or less complex, at least) and, as also expected , minifilter is the model used for

creating file system minifilter drivers. As kernel drivers, minifilter is also stacked, but their order of loading

(actually, positioning in stack) is determined by its respective altitude. The concept of altitude seems to be

complex, but it is not, and readers can notice it by observing the following sequence:

a. Application requests an I/O operation

b. I/O Manager receives and forwards this request to the Filter Manager (fltmgr.sys).

c. The Filter Manages receives the request from I/O manager (that is key component) and checks all

its registered minifilter drivers (mfd1, mfd2, mfd3, mfd4...) according to the registered altitude.

d. After minifilter doing its actions, the request is forwarded to the File System Filter Driver.

e. Finally, the request reaches the Storage Driver Stack.

https://exploitreversing.com

31 | P a g e

There is a list of diverse ways to represent the flux of information involving mini-filter drivers, and one of

them is through the following image, as designed by Microsoft (from MSDN):

[Figure 29] Filter Manager and Filter Drivers

Therefore, altitude value determines the order that minifilter drivers will be called by the Filter Manager.

In addition, there could be more than one Filter Manager loaded and each one establishes a frame for

minifilter drivers. Similar to any conventional service, mini-filter drivers can be loaded (since the user have

the due SeLoadDriverPrivilege, at least) by using information on Registry (as example: Get-Item -Path

HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv\) , which is passed to FilterLoad()

(https://learn.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterload) that invokes

FltLoadFilter() (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-

fltloadfilter). At the same way, the unloading operation must be performed by calling FilterUnload().

A minifilter file system driver must register itself (through FltRegisterFilter function) with the Filter

Manager and specify operations that it (minifilter driver) want to intercept and process, although

minifilter drivers do not need to set up dispatch routines themselves because they are not attached

directly in the execution flow (check image above). Callbacks (pre-operation and post-operations, which we

will talk about them soon) are specified through an array of FLT_OPERATION_REGISTRATION structures,

which also specifies major functions such as IRP_MJ_CREATE, IRP_MJ_READ, IRP_MJ_WRITE,

IRP_MJ_FILE_SYSTEM_CONTROL, IRP_MJ_DIRECTORY_CONTROL and so on. This key structure will be

appropriately used as argument of the FltRegisterFilter().

APPLICATION

I/O Manager

Filter Manager

Minifilter Driver 1

Minifilter Driver 2

Minifilter Driver 3

File System Driver

Storage Driver Stack

Hardware

Minifilter Driver 4

https://learn.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltloadfilter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltloadfilter

https://exploitreversing.com

32 | P a g e

While discussing about routines related to mini-filter drivers, there are few of them that are well-known

such as:

▪ DriverEntry(): occurs and works as for device drivers, it is used for initialization.

▪ FltRegisterFilter(): this function is used to register a minifilter driver (and associated callback

routines) with the filter manager.

▪ FlsStartFiltering(): it is responsible for notifying the Filter Manager that a minifilter driver is

available and ready to attach to volumes and filter requests (IRP, fast I/O and file system callback

operations). In other words, it starts the real filtering operation.

These routines present interesting details that help to explain concepts mentioned in previous paragraphs.

The prototype of FltRegisterFilter(), which is one the main one so far, is quite simple:

[Figure 30] FltRegisterFilter function

As readers can see, there are only three parameters:

▪ Driver: it is a pointer to the driver object representing the mini-filter driver and as expected, it’s the

same driver object pointer passed to DriverEntry() routine.

▪ Registration: it is a pointer to a minifilter registration structure (FLT_REGISTRATION structure).

▪ RetFilter: it is a pointer to a variable that receives a filter pointer that is returned to the caller

(basically, it’s the function’s return).

The _FLT_REGISTRATION structure has the following members:

[Figure 31] _FLT_REGISTRATION structure

This informative structure brings information related to arrays of other structures such as

FLT_CONTEXT_REGISTRATION and FLT_OPERATION_REGISTRATION, which the former one is attributed to

each context type and the latter one is attributed for each type of I/O for which the minifilter registers

preoperation and postoperation callback routines.

https://exploitreversing.com

33 | P a g e

Anyway, there is no doubt that the most important field of this structure is OperationRegistration, which is

part of the FLT_OPERATION_REGISTRATION structure that we just mentioned, but it is not the only one.

There are other relevant fields such as FilterUnloadCallback (it holds the address of a function that is called

when a driver is about to be unloaded), InstanceSetupCallback (it is a pointer to a callback that is called by

Filter Manager when a new volume is available), InstanceSetupCallback (it points to a callback that allows

the minifilter drivers to be notified just before the be attached to a volume),

InstanceQueryTeardownStartCallback (it contains a pointer to a function that will be called by the Filter

Manager before the teardown process, making possible for minifilter to cancel pending operations and

cancel or complete I/O requests) and so on.

About the teardown process, a minifilter driver instance is torn down in the following contexts: either the

minifilter is unloaded, or there is a specific detach request to be accomplished or the volume which the

instance is attached is dismounted.

It is also suitable to highlight that, during a tearing down operation of an instance, any routine executing

preoperation and postoperation callback routines continue executing without facing any problems, but I/O

requests waiting for these preoperation and postoperation callback routines may be cancelled.

Additionally, operations initiated by the minifilter drivers proceed until they are complete.

Other valuable members of FLT_REGISTRATION structure are:

▪ ContextRegistration: it represents a pointer to an array of FLT_CONTEXT_REGISTRATION

structures, being one for each context type (formatted data to be used by the driver if it’s

necessary) that the minifilter could use.

▪ OperationRegistration: it represents a pointer to an array of FLT_OPERATION structures, being one

for each type of I/O for which the minifilter registers preoperation and postoperation callback

routines. As mentioned previously, this structure has members which also specify the major

function such as IRP_MJ_CREATE, IRP_MJ_READ, IRP_MJ_WRITE,

IRP_MJ_FILE_SYSTEM_CONTROL, IRP_MJ_DIRECTORY_CONTROL, and so on.

If readers are asking about the definition of callbacks, they could interpret callbacks as a sort of “modern

hooking”. Actually, callback methods allow us to register routines that will be triggered and executed when

specific events occur on the system. There are a series of kernel callback functions, which will be

commented on later, and callbacks related to kernel drivers and mini-filter drivers, which some of them

will be mentioned below.

There is a list of pointers to different callbacks that can be registered, and a small amount of these most-

used callback routines are:

▪ FilterUnloadCallback: it contains a pointer to a callback routine that will be called to notify the

minifilter driver that the filter manager is going to unload the minifilter driver. This callback is

defined and viewed as optional, although without it the driver cannot be unloaded, so leaking

resources.

▪ InstanceSetupCallback: it is a pointer to a callback routine that will be invoked to notify the

minifilter driver that a new volume is mounted and available. In other words, the filter manager

calls this routine to notify the minifilter driver to eventually respond to an automatic or manual

https://exploitreversing.com

34 | P a g e

attachment request to the given volume. As readers can realize, there are interesting practical

usages for it.

▪ InstanceQueryTeardownCallback: it is a pointer to a callback routine that will be called to allow the

minifilter driver to respond to a manual detaching request originated from any kernel-mode

component calling FltDetachVolume or even a user-mode application calling FilterDetach function.

▪ InstanceTeardownStartCallback: it holds a pointer to a callback routine that will be called when the

filter manager starts tearing down a minifilter driver instance to allow it to complete any pending

operation such as closing opened files and stop queueing new work items and save the information.

From a certain point of view, this callback routine can be interpreted as the first stage preparing for

a cleaning up routine.

▪ InstanceTeardownCompleteCallback: it represents a pointer to a callback routine that will be called

when the tearing down process is complete to allow the the minifilter driver to close eventual

opened files and perform any other cleanup process.

▪ GenerateFileNameCallback: it contains a pointer to a callback routine that allows the minifilter

driver to intercept file name requests by other minifilter drivers above it on the minifilter stack (it is

quite important to remember of the driver stack concept). When this callback routine is invoked,

the minifilter driver is able to generate its own file name information based on file name

information for the file that may have been retrieved through FltGetFileNameInformation().

The Filter Manager does its job and makes everything easier because it handles usual IRP tasks like copying

parameters to next stack location and also provide the possibility to minifilter drivers to register only for

I/O that they are really interested (it makes sense for security products, for example, and that is the main

reason that minifilter drivers | file system drivers are interpreted as optional drivers) or need to handle

through an array of FLT_OPERATION_REGISTRATION structure:

[Figure 32] _FLT_OPERATION_REGISTRATION structure

The MajorFunction parameter specifies the type of I/O operations, which are given by FLT_PARAMETERS

union and few of them are shown below:

▪ Create: IRP_MJ_CREATE

▪ CreatePipe: IRP_MJ_CREATE_NAMED_PIPE

▪ CreateMailslot: IRP_MJ_CREATE_MAILSLOT

▪ Read: IRP_MJ_READ

▪ Write: IRP_MJ_WRITE

▪ QueryFileInformation: IRP_MJ_QUERY_INFORMATION

https://exploitreversing.com

35 | P a g e

▪ SetFileInformation: IRP_MJ_SET_INFORMATION

▪ QueryEa: IRP_MJ_QUERY_EA

▪ SetEa: IRP_MJ_SET_EA

▪ QueryVolumeInformation: IRP_MJ_QUERY_VOLUME_INFORMATION

▪ SetVolumeInformation: IRP_MJ_SET_VOLUME_INFORMATION

▪ DirectoryControl: IRP_MJ_DIRECTORY_CONTROL

▪ FileSystemControl: IRP_MJ_FILE_SYSTEM_CONTROL

▪ DeviceIoControl: IRP_MJ_DEVICE_CONTROL and IRP_MJ_INTERNAL_DEVICE_CONTROL

▪ LockControl: IRP_MJ_LOCK_CONTROL

▪ QuerySecurity: IRP_MJ_QUERY_SECURITY

▪ SetSecurity: IRP_MJ_SET_SECURITY

▪ QueryQuota: IRP_MJ_QUERY_QUOTA

▪ SetQuota: IRP_MJ_SET_QUOTA

▪ Pnp: IRP_MJ_PNP

▪ AcquireForSectionSynchronization: IRP_MJ_ACQUIRE_FOR_SECTION_SYNCHRONIZATION

▪ AcquireForModifiedPageWriter: IRP_MJ_ACQUIRE_FOR_MOD_WRITE

▪ ReleaseForModifiedPageWriter: IRP_MJ_RELEASE_FOR_MOD_WRITE

▪ QueryOpen: IRP_MJ_QUERY_OPEN

▪ FastIoCheckIfPossible: IRP_MJ_FAST_IO_CHECK_IF_POSSIBLE

▪ NetworkQueryOpen: IRP_MJ_NETWORK_QUERY_OPEN

▪ MdlRead: IRP_MJ_MDL_READ

▪ MdlReadComplete: IRP_MJ_MDL_READ_COMPLETE

▪ PrepareMdlWrite: IRP_MJ_PREPARE_MDL_WRITE

▪ MdlWriteComplete: IRP_MJ_MDL_WRITE_COMPLETE

▪ MountVolume: IRP_MJ_VOLUME_MOUNT

The second parameter is Flags, which specifies when to call preoperation and postoperation callback

routines for cached I/O or paging I/O operations, but it is not quite relevant for us right now.

PreOperation and PostOperation are pointers to PFLT_PRE_OPERATION_CALLBACK and

PFLT_POST_OPERATION_CALLBACK routine that, obviously, are registered as preoperation and post-

operation callback routines, respectively.

In few and rough words, preoperation callback routines perform the processing tasks needed for complete

the I/O operation, and controls what should be done with IRP requests and post-operation routines. Post-

operation callback routines are invoked by the Filter Manager over an I/O operation when lower drivers

have already finished completion processing.

A PFLT_PRE_OPERATION_CALLBACK routine can return different values such as:

▪ FLT_PREOP_COMPLETE: this value means that the minifilter driver is completing the I/O operation,

and the filter driver does not call postoperation callbacks of any minifilter below the caller

(remember about the driver stack) and doesn’t forward (pass down) any request to minifilter

drivers below the caller.

▪ FLT_PREOP_DISALLOW_FASTIO: this value means that the operation is a fast I/O operation, and

that the minifilter driver does not allow that the fast I/O path to be used for this operation. The

https://exploitreversing.com

36 | P a g e

remaining characteristics related to postoperation callbacks and forwarding requests are similar to

FLT_PREOP_COMPLETE.

▪ FLT_PREOP_PENDING: this value means that, for a provided minifilter driver, the operation is still

pending and only after FltCompletePendedPreOperation has been invoked is that the Filter

Manager will continue the I/O operation.

▪ FLT_PREOP_SUCCESS_NO_CALLBACK: this value means that the minifilter driver is returning the

I/O operation to the Filter Manager for further processing, but the the Filter Manager will not call

the postoperation callback of the minifilter drivers over the I/O completion.

▪ FLT_PREOP_SUCCESS_WITH_CALLBACK: this value means that the minifilter driver is returning the

I/O operation to the Filter Manager for further processing, which will invoke the post-operation

callback over of the minifilter driver over the I/O completion.

▪ FLT_PREOP_SYNCHRONIZE: this value indicates that the minifilter driver is returning the I/O

operation to the Filter Manager for further processing, but it will not complete the operation. In

addition, the Filter Manager will invoke the post-operation callback of the minifilter within of the

context of the current thread at IRQL <= DISPATCH_LEVEL.

▪ FLT_PREOP_DISALLOW_FSFILTER_IO: this value means that the minifilter driver is disallowing a fast

QueryOpen operation and forcing the operation proceed through the slow path.

Readers have realized the introduction of a new term in these last paragraphs: Fast I/O. In a few words,

Fast I/O is an additional mechanism, supported by minifilter drivers, to receive requests. Actually, a file

system driver filters I/O requests coming as an IRP (I/O Request Packet) or Fast I/O requests. At the same

way of IRP requests, Fast I/O requests also have callback methods.

It is fair to say that IRP requests have a kind of equivalence to Fast I/O requests, but they are not the same,

and IRPs are able to handle much more I/O’s type than Fast I/O. Furthermore, the DriverEntry routine can

register IRP dispatch routines and also Fast I/O callback routines, but only a set of these routines can be

registered for a given filter driver.

By the way, what is the difference in the usage between IRPs and Fast I/O? The coverage of IRP is broader,

and it can be used for synchronous/asynchronous operations, and doesn’t matter whether it is a cached or

non-cached I/O. In the case of Fast I/O, it is suitable for synchronous I/O operations on cached files.

Therefore, the general requisition and practical usage of filter drivers is focused on IRP requests, although

even in this scenario filter drivers must define a Fast I/O routine returning ‘false’ value.

Returning to the main topic, a PFLT_POS_OPERATION_CALLBACK routine can return different values such

as:

▪ FLT_POSTOP_FINISHED_PROCESSING: this value means that the minifilter driver already has

finished the completion processing and the Filter Manager will continue the completion processing

of the I/O operation.

https://exploitreversing.com

37 | P a g e

▪ FLT_POSTOP_MORE_PROCESSING_REQUIRED: this value represents that the minifilter driver has

paused the completion, will not return the control to the Filter Manager and it will not do any post-

operation task, unless that the post-operation callback has posted the I/O operation to a work

queue or the work routine to invoke FltCompletePendedPostOperation function to return the

control of the operation to the filter manager.

▪ FLT_POSTOP_DISALLOW_FSFILTER_IO: this value means that the minifilter driver is disallowed a

fast QueryOpen operation and forces the operation down the slow path.

There is a relevant fact to mention here: post-operations are called within an arbitrary thread context with

IRQL <= DISPATCH_LEVEL. Additionally, I/O completion processing with IRQL < DISPATCH_LEVEL cannot be

executed in the post-operation callback routine, and must be queued to a work-queue through the

invocation of FltDoCompletionProcessingWhenSafe or FltQueueDeferredIoWorkItem routines.

Exceptions for this rule are if the pre-operation of the mini-filter driver to return

FLT_PREOP_SYNCHRONIZE or even whether there is the certainty that the post-create callback routine will

be called at IRQL_PASSIVE_LEVEL.

The registration of pre-operation and post-operation callback routines does not need a match, so a post-

operation callback routine can be registered without a respective pre-operation callback routine. Of

course, the inverse is also true.

In general, the list of possibilities provided by minifilters is quite long, and one the capability of changing

parameters such as buffer addresses, MDLs and target file objects related to I/O operations, and even

swapping buffers. These operations can be effectively done by preoperation callbacks and can be useful in

different contexts. After changing a parameter, the FltSetcallbackDataDirty is called to notify that

parameter changes have been performed. Additionally, minifilter drivers are also able to change the I/O

status for a given operation. To complete and perform the necessary cleanup, minifilter driver’s authors

must free any allocated buffer.

As we have quickly discussed about the possibility of changing parameters, so readers need to know that

there is a structure named FLT_CALLBACK_DATA, that represents an I/O operation and, of course, is used

by minifilters and the own Filter Manager over I/O operations:

[Figure 33] _FLT_CALLBACK_DATA structure

https://exploitreversing.com

38 | P a g e

The main members of this structure are:

▪ Flags: this member represents a bitmask of flags that describe I/O operations and, to minifilters,

only the FLTFL_CALLBACK_DATA_DIRTY, which indicates that the content of the callback data

structure was modified, can be specified. If this structure is initialized by the Filter Manager, so

other flags can be used such as FLTFL_CALLBACK_DATA_FAST_IO_OPERATION (the callback data

structure represents a fast I/O operation), FLTFL_CALLBACK_DATA_FS_FILTER_OPERATION (the

callback data structure represents a file system minifilter callback operation),

FLTFL_CALLBACK_DATA_IRP_OPERATION (the callback data structure represents an IRP-based

operation). Readers should search for additional flags used to initialize the callback data structure

as well as during completion processing.

▪ Iobp: this member contains a pointer to an FLT_IO_PARAMETER_BLOCK structure, which contains

the parameters for the I/O operation. .

▪ IoStatus: this member contains a pointer to an IO_STATUS_BLOCK structure, which contains status

and information for an I/O operation and as mentioned previously, its content can be changed by a

preoperation callback or even a postoperation callback.

The FLT_IO_PARAMETER_BLOCK, pointed by the Iobp parameter, has the following composition:

[Figure 34] _FLT_CALLBACK_DATA structure

Certainly readers are more familiar with most the members that make part of this structure and,

eventually, I don’t need to explain one by one, although there is an explanation on MSDN (Microsoft

Learn): https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-

_flt_io_parameter_block. Additionally, note the last member is Parameters, which is given by a giant union

FLT_PARAMETERS that is described on: https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_parameters.

Minifilters are involved in a quite extensive list of activities, and it also can generate and send IRP requests,

so during reverse engineering of these types of drivers we can see routines associated with opening,

reading, writing and even creating files (FltReadFile, FltWriteFile, FltCreateFile and so on).

At the same line, there is the support offered by the Filter Manager for communication between the user

mode applications and kernel mode (minifilters) through communication ports, which it is important to

control security involved in this communication through applied security descriptors.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_io_parameter_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_io_parameter_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_parameters

https://exploitreversing.com

39 | P a g e

Actually, communication ports are not buffered, so they are fast, and are used by a bidirectional

communication channel. Additionally, they are created by the minifilter drivers that keep listening for any

incoming communication and, once the user mode application tries to connect to this port, so the Filter

Manager calls the ConnectNotifyCallback routine from minifilter driver to handle the connection that is

only accepted if the user mode application has the necessary and minimum rights described by the security

descriptor. Furthermore, there are many routines offered by the Filter Manager, which are involved with

communication ports such as FltSendMessage, FltCreateCommunicationPort, FltCloseClientPort, as well

as routines available for being used by the user mode application such as

FilterConnectCommunicationPort, FilterSendMessage, FilterGetMessage, FilterSendMessage and so on.

Finally, and for completeness, it is appropriate to highlight that user mode application can interact with

minifilter drivers through an extensive series of routines for loading/unloading minifilter drivers (FltLoad,

FltUnload), enumerating filters (FilterFindFirst, FilterFindNext, …), querying information

(FilterGetInformation, FilterGetInstanceInformation,…) and so on.

Unfortunately, installing a minifilter driver is not so simple as installing a kernel driver, and it is necessary

to create an INF file, which is out of the scope of this article.

On Windows system we are able to find out a series of minifilter drivers by running the following

commands:

[Figure 35] Minifilter drivers list

Of course, readers can check the altitude of a driver by checking its respective entry in the Registry. For

example, for the SysmonDrv we have:

➢ Get-ChildItem -Path HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv\Instances

This command can do much more than only listing minifilter drivers as, for example, loading and unloading

them (as expected, unloading a minifilter driver call the FilterUnloadCallback routine):

➢ fltmc load <filter name>

➢ fltmc unload <filter name>

On WinDbg, minifilter drivers can be listed using a debugger extension (fltkd) of the WinDbg, which offers

a series of options such as listing detail information about a given minifilter, getting a list of minifilters,

listing volumes and filter manager frames, for example. Before proceeding, and as I don’t know whether

https://exploitreversing.com

40 | P a g e

readers are used to doing it, in this environment I am using two virtual machines (on VMware): the first

one running Windows 11 (host) and the second one running Windows 11 (target). In my case, both systems

have Windows SDK installed.

On target:

▪ bcdedit /set {default} DEBUG YES

▪ bcdedit /dbgsettings net hostip:<host ip> port:50100 key:1.2.3.4

▪ bcdedit /dbgsettings

▪ shutdown /r /t 0

On host:

▪ windbg -k net:port=50100,key=1.2.3.4

▪ Make sure that symbols are configured:

o File → Symbol File Path: srv*c:\symbols*https://msdl.microsoft.com/download/symbols

o set _NT_SYMBOL_PATH=srv*c:\symbols*https://msdl.microsoft.com/download/symbols

(personally, I prefer setting it at Advanced Windows Setting → Environment Variables and

creating the _NT_SYMBOL_PATH as explained above)

▪ Debug → Break

If everything is OK, you should see the WinDbg prompt, and can execute the following:

[Figure 36] Attached minifilter drivers (truncated output)

https://exploitreversing.com

41 | P a g e

We can use !fltkd.filters extension command too (it is exactly the same). As in the article from Microsoft,

which is related to Windows Defender detection that was previously mentioned at beginning of this text,

the Windows Defender Filter (WdFilter.sys) is a desirable choice. We can also list its respective

communication ports by using the same fltkd extension. Picking up its object’s address from the output

above (FLT_FILTER: ffff880f8ae9c4d0 "WdFilter" "328010") by executing the following command:

[Figure 37] Retrieving a minifilter communication port

As listed on Figure 37, there are only five minifilter driver’s communication ports associated to the

WdFilter minifilter. If we need to collect further details about the minifilter driver itself then execute:

https://exploitreversing.com

42 | P a g e

[Figure 38] Retrieving details about a minifilter communication

The output shows us valuable information about the minifilter drivers, including the Communication Port

List. If readers have any issue with symbols, check whether the symbols path is correctly configured and

force them loading: .reload /f command.

If we pay attention to details, we will be able to realize other terms that we have not commented yet:

▪ volume: a filesystem filter driver, following the minifilter model or the legacy file system filter

model), can also perform I/O operations on one or more file system volumes as logging, I/O

filtering, modifying or monitoring (as explained previously, and based on the definition from

Microsoft MSDN). A filter device object must be created (IoCreateDevice function) and attached to

a filter driver stack by calling IoAttachDeviceToStackSafe function.

https://exploitreversing.com

43 | P a g e

▪ context: it is a structure that can be associated to the filter manager object and used to save and

pass information (the context) about an object. This structure is defined by the minifilter driver

itself, and there can be contexts associated to volumes, files, instances, transactions, stream

handles (file objects) and streams. Readers could be interested in knowing that functions such as

FltAllocateContext (to create contexts), FltRegisterFilter (registering contexts), FltSetFileContext |

FltSetInstanceContext | FltSetStreamContext | FltSetVolumeContext | FltSetTransactionContext

(setting contexts) and other ones associated to context’s manipulation. Additionally, there is an

interesting example (code) demonstrating how to do it that is available on:

https://github.com/Microsoft/Windows-driver-samples/tree/main/filesys/miniFilter/ctx.

To get a list of volumes and their respective attached filter drivers (pay attention to WdFilter driver), you

can execute the following command:

[Figure 39] Getting a volume list

To examine information about a specific volume (FLT_VOLUME structure), execute: !fltkd.volume

ffff880f8a92f010 (it is the second volume listed previously)

https://github.com/Microsoft/Windows-driver-samples/tree/main/filesys/miniFilter/ctx

https://exploitreversing.com

44 | P a g e

[Figure 40] Retrieving volume information

To list specific information about a given instance (an attachment to FLT_VOLUME structure), execute:

[Figure 41] Retrieving instance information

https://exploitreversing.com

45 | P a g e

Of course, we can get inside of structures and find out much more information. For example, we can get

information from the WdFilter driver by overlaying its address with the _FLT_FILTER structure:

[Figure 42] Getting further WdFilter details

All functions, concepts, and terms we mentioned previously are present here: altitude, FilterUnload

function (called when the minifilter driver is unloaded), InstanceQueryTearDown, contexts, a pointer to

an array of FLT_OPERATION_REGISTRATION structures (contains the operation callbacks), and so on. In

the other side, the DriverObject concept we already now and, actually, we will be reviewing a typical

output using it soon.

Although I have not explained previously, each filter manager frame works like a placeholder in the I/O

driver stack, and minifilters attach to this frame. For example, there could exist two Filter Frames in the I/O

driver stack with a legacy filter driver in the middle. In this case, we could choose whether the minifilter

driver would be attached in the Filter Frame before the legacy filter driver or after the legacy filter driver.

Anyway, we can list preoperations and postoperations (routine addresses and, when it is possible,

respective names) associated to the driver. For example, we can list the first ten operations by executing

the following command:

https://exploitreversing.com

46 | P a g e

[Figure 43] Listing minifilter pre/post operations

The output’s image is small, and, in this specific case, we haven’t gotten respective names. If you try the

same command, but without “-c” option, you will receive a line-by-line output (longer, but better). A

similar output, but from WoF (Windows Overlay Filter) driver, is shown below to provide a case where the

routine’s names are shown (sorry for the small size):

[Figure 44] Listing minifilter pre/post operations of another driver as comparison

Returning to the WdFilter minifilter driver, we can retrieve callback information related to a given

instance:

[Figure 45] FLT_INSTANCE structure: associated callbacks

All callback nodes have an associated name such as ACQUIRE_FOR_SECTION_SYNC, CREATE, READ,

WRITE,SET_INFORMATION, QUERY_EA, SET_EA, DIRECTORY_CONTROL, FILE_SYSTEM_CONTROL and

CLEANUP.

There are multiple MUP (Multiple UNC Provider), which a MUP is a kernel component responsible for

channeling remote file system access through UNC to a network redirector, and it is associated with each

callback node (check the figure above).

https://exploitreversing.com

47 | P a g e

At the same way we did with _FLT_FILTER structure, we can pick up one of the callback nodes and getting

information by overlaying it with _CALLBACK_NODE structure as shown below:

[Figure 46] _CALLBACK_NODE structure: retrieving information to one given instance

There are multiple details to comment about the output:

▪ We have a doubly linked list of CALLBACK_NODE structures.

▪ We see a reference to PreOperation and PostOperation callbacks.

▪ All references to names are “blank”, but we already learned that this doesn’t happen with other

minifilter drivers such WoF (Windows Overlay Filter).

As a minifilter needs to pass contexts to save and pass information about an object, so it required a

mechanism like minifilter contexts (CONTEXT_NODE) and, as expected, there is a context associated to an

instance too:

[Figure 47] _CONTEXT_NODE structure: retrieving information to one given instance

Checking the fourth line of the output, we see the reference to NonPagedPool. Except volumes contexts,

which must be allocated from NonPagedPool, all remaining contexts (instances, streams, files, transaction

and stream handles) can be allocated from PagedPool or NonPagedPool.

Anyway, if readers want, it is possible to investigate the _CONTEXT_NODE structure by using the same

technique used until now and picking up one of the context nodes, as shown on the next page:

https://exploitreversing.com

48 | P a g e

[Figure 48] _CONTEXT_NODE structure: overlay with structure’s address from last output

An organized output containing exactly the same information is given by:

[Figure 49] Context information associated to the instance

Returning to communication ports subject, it is time to examine one of those ports:

[Figure 50] _FLT_PORT_OBJECT structure

As we learned previously, a communication port (created by FltCreateCommunicationPort function) is

important to keep the communication between the minifilter driver and application and, as expected,

there is a series of functions involved with communication tasks, and few of these functions are

FilterConnectCommunicationPort, FltSendMessage, FilterSendMessage, FilterReplyMessage and so on.

Additionally, drivers uses mechanisms to exchange messages (its header is represented by

FILTER_MESSAGE_HEADER structure), to signaling that is waiting for messages (message queue,

represented by _FLT_MESSAGE_WAITER_QUEUE structure), a callback to be notified when a message is

available (MessageNotifyCallback routine, which is called at IRQL=PASSIVE_LEVEL by Filter Manager) and a

PortCookie that is used to uniquely identify the client port or server port, depending on the side of the

communication.

https://exploitreversing.com

49 | P a g e

Just in case readers have curiosity about the stuff, there is a PowerShell module named NtObjectManager,

written by James Forshaw (https://www.powershellgallery.com/packages/NtObjectManager/1.1.33) that

provides the communication ports easily for you:

PS C:\> Install-Module -Name NtObjectManager
PS C:\> Set-ExecutionPolicy RemoteSigned
PS C:\> Import-Module NtObjectManager
PS C:\> NtObject:\ | Where-Object TypeName -eq "FilterConnectionPort"
PS C:\> ls NtObject:\ | Where-Object TypeName -eq "FilterConnectionPort"

Name TypeName
-- ----------------------------
UnionfsPort FilterConnectionPort
storqosfltport FilterConnectionPort
MicrosoftMalwareProtectionRemoteIoPortWD FilterConnectionPort
MicrosoftMalwareProtectionVeryLowIoPortWD FilterConnectionPort
WcifsPort FilterConnectionPort
WinSetupMonPort FilterConnectionPort
MicrosoftMalwareProtectionControlPortWD FilterConnectionPort
BindFltPort FilterConnectionPort
MicrosoftMalwareProtectionAsyncPortWD FilterConnectionPort
CLDMSGPORT FilterConnectionPort
MicrosoftMalwareProtectionPortWD FilterConnectionPort

[Figure 51] List of registered communication ports

Returning to _FLT_PORT_OBJECT structure, the MegQ member is, as we already explained, a pointer to

the _FLT_MESSAGE_WAITER_QUEUE structure, which can be applied to the address and, executing the

following sequence of commands, we have:

[Figure 52] Examining a sequence of fields since _FLT_MESSAGE_WAITER_QUEUE

As we can realize, from a given message queue structure we reached an _ETHREAD and

_IO_STACK_LOCATION structures.

https://www.powershellgallery.com/packages/NtObjectManager/1.1.33

https://exploitreversing.com

50 | P a g e

Investigating the fourth command, we have:

▪ dx Debugger.Utility.Collections.FromListEntry(*(nt!_LIST_ENTRY *)0xffff880f905cd1c8, "nt!_IRP",

"Tail.Overlay.ListEntry")

Readers could certainly ask from where components of this command come. This WinDbg command is

using LINQ (Language-Integrated Query), which is well-known from C# programming, and the syntax of

this command comes from WinDbg documentation on MSDN. In few words, this command parses the

nt!_LIST_ENTRY structure, and its composition is simple:

▪ 0xffff880f905cd1c8: Flink pointer

▪ nt!_IRP: structure being referenced.

▪ Tail.Overlay.ListEntry: field from _IRP structure being referenced by Flink pointer.

The remaining point is: how do I know that this list points to the nt!IRP structure and, in special, to

Tail.Overlay.ListEntry field? Open the fltmgr.sys file on the IDA Pro, and even not doing any treatment on

the code, you can easily observe that FltpAddMessageWaiter() receiving three arguments: a pointer to

_IO_Csq structure, a pointer to IRP structure and the third argument associated with context:

[Figure 53] FltpAddMessageWaiter function

On line 6 we have our reference to p_ListEntry = &Irp->Tail.Overlay.ListEntry and, on lines 14 and 15,

readers are able to check the doubly linked list set up. Anyway, once readers reach the _ETHREAD

structure, it is possible to retrieve the value of any field.

There are deeper details about these concepts such as filter contexts, communication ports, message

queues and so on, but it is enough for now and, hopefully, readers are forming a big picture about

minifilter drivers.

Of course, there are more details, and it is time to move on.

https://exploitreversing.com

51 | P a g e

As a summary, while examining minifilter drivers, readers will find key routines such as:

▪ DriverEntry: it is the same routine as kernel drivers and, at the same way, it is requested for all

filter drivers. Additionally, this routine serves as a starting point for key actions, and, for example, it

is where the minifilter driver can register (through FltRegisterFilter routine) one preoperation

callback and one postoperation callback (it is not necessary to be present both ones) for each of of

different I/O types been manipulated and filtered by the minifilter.

▪ FltRegisterFilter: this routine is used by minifilter drivers to register to provide a list of callback

routines to the Filter Manager and, at the same time, to register themselves to the minifilter

driver’s list.

▪ FltStartFiltering: this routine notifies the Filter Manager that it is ready and can start to filter

requests by attaching to volumes.

▪ FltCreateCommunicationPort: this routine opens a kernel communication server port.

▪ FltCloseCommunicationPort: this routine closes a kernel communication server port.

▪ FilterUnloadCallback: it is the routine responsible for unloading the minifilter driver. It is an

optional routine.

▪ FltUnregisterFilter: this routine unregisters the minifilter driver.

It is really important to understand the concept of preoperation callback because each minifilter driver can

have its own, and every associated preoperation callback to each registered minifilter will be called from

the minifilter driver that holds the higher altitude up to the lowest one for that specific type I/O operation.

Additionally, the Register parameter from FltRegister routine is relevant because it holds a pointer to the

FLT_REGISTRATION structure. This structure holds a field/member that is actually an array of

FLT_OPERATION_REGISTRATION structures, which each one represents a type of operation being

manipulated and filtered by the minifilter driver. Certainly, it might seem confusing because there are

three levels of redirection here, but it is not so uncommon with kernel and minifilter drivers. However, it is

not the end yet and, as there are two file system filter driver models, minifilter drivers receive the I/O

operation first, and later the legacy file system filter drivers receive it for processing. Afterwards, the

associated file system receives the I/O operation for further processing. In the order side, postoperation

routines (each minifilter drivers that has registered to process that type of I/O operation can have or not a

postoperation callback) start their work in the reverse order, finish the processing of the I/O operation,

return it to the filter managers, which passes it to the next minifilter driver at the upper layer. At this point,

it is not hard to realize that a file system minifilter likely will be using many preoperation callback routines

to manipulate and filter I/O operations, and these preoperation callbacks can return values to the Filter

Manager like FLT_PREOP_SYNCHRONIZE (for IRP based operations, which can have its type confirmed by

FLT_IS_IRP_OPERATION macro, and a postoperation routine will be invoked during the I/O completion

phase), FLT_PROP_SUCCESS_NO_CALLBACK (no postoperation callback routines will be called during the

I/O completion phase) and FLT_PREOP_SUCCESS_WITH_CALLBACK (postoperation callback routines will

be invoked during the I/O completion phase), for example, as already mentioned previously in this article.

Of course, at the same way, a minifilter driver could have more than one postoperation callback routines

that can be executed at IRQL lower or equal to DISPATCH_LEVEL and, due to this fact, data structures

must be allocated in nonpaged pool. Anyway, postoperation routines are called in arbitrary context.

Minifilter drivers also transfer information (data) between applications running in user mode and other

minifilter drivers running in lower layers, which can reach device drivers and, because these data

transferring operations, they are also use some kind of buffer.

https://exploitreversing.com

52 | P a g e

There is not any news related to data buffers, and file system minifilter drivers uses the same methods

from kernel drivers to access buffers that is Buffered I/O (mainly used over IRP operations such as

IRP_MJ_CREATE and IRP_MJ_QUERY_INFORMATION, for example), Direct I/O and Neither I/O (it can used

by operations such as IRP_MJ_SYSTEM_CONTROL and IRP_MJ_QUERY_SECURITY). Additionally, important

and usual operations such as IRP_MJ_READ, IRP_MJ_WRITE, IRP_MJ_DEVICE_CONTROL and

IRP_MJ_QUERY_OPERATION (mentioned above) can be configured as Fast I/O or IRP based operations.

As readers have realized, same I/O IRP operations major codes are valid for minifilter drivers, and you can

check them by using a well-know WinDbg command:

[Figure 54] Listing IRP routines associated to the minifilter driver

https://exploitreversing.com

53 | P a g e

The Windows Cloud Files filter driver (cldflt.sys) is a file system minifilter driver that is associated to the

OneDrive, for example. The GsDriverEntry() is a routine generated automatically when the driver is built,

which does a short initialization and, soon after having completed the initialization, it calls the real

DriverEntry() that was implemented.

Moving forward, I would like to comment about ECP (Extra Create Parameters) that are structures holding

information used during file creation, and that can be attached to I/O operations by using an ECP_LIST

structure. For example, a file system filter driver can manipulate ECPs (Extra Create Parameters) to

process IRP_MJ_CREATE operations and are exactly these ECPs that are used to distinguish between

NtCreateUserProcess() and NtCreateProcessEx() calls, which were also mentioned in the Microsoft’s

article at beginning of this text. ECPs can be one of two available types: System-defined ECPs that are used

by the OS to attach further information to IRP_MJ_CREATE mentioned previously, and User-Defined ECPs

that are used by kernel drivers to process and add further information to the IRP_MJ_CREATE operation.

Readers likely will recognize ECPs manipulation when find routines such as

FltAllocateExtraCreateParameterList (to allocate memory to ECP_LIST structure),

FltFreeExtraCreateParameterList (to free memory used by ECP_LIST structure),

FltAllocateExtraCreateParameter (to allocate paged-memory pool for an ECP context structure, returning

a pointer to it), FltInsertExtraCreateParameter (to insert ECP context structures into the ECP_LIST

structure), IoInitializeDriverCreateContext (to initiate an IO_DRIVER_CREATE_CONTEXT_STRUCTURE) and

finally IoCreateFileEx|FltCreateFileEx2 (to attach ECPs to a given IRP_MJ_CREATE_CONTEXT).

Of course, there is an extensive list of routines to process and manipulate ECPs such as

FltGetEcpListFromCallbackData (returns a pointer to an ECP list associated with a create operation

callback-data object), FltFindExtraCreateParameter (searches a provided ECP list for an ECP’s context

structure) and FltIsEcpFromUserMode (checks whether the ECP is originated from the user mode). A quick

sample of usage of these routines is shown below:

[Figure 55] Routines related to ECP

https://exploitreversing.com

54 | P a g e

Returning once again to the Microsoft article, the GUID_ECP_CREATE_USER_PROCESS and respective

CREATE_USER_PROCESS_ECP_CONTEXT context, which contains the token of the process to be created,

are used by kernel while it opens the process executable file. Therefore, while the NtCreateUserProcess

adds the ECP for a process creation, the NtCreateProcessEx does not do it because it uses a section handle

already created (existing). This makes it simpler to distinguish when one or the other function is used.

Certainly, ECP is not the only interesting topic because there is a new mechanism named BypassIO that has

been introduced in Windows 11, that is requested for a file handle, and it turns the I/O access for reading

files better and quicker due to a lower overhead, and this is leveraged by minifilter drivers. The big

advantage of using BypassIO is that the I/O request does not pass through the entire driver stack but goes

directly to NTFS file system (bypassing volume and filesystem stack, and the latter can be composed by

Volume Device Object (VDO) or Control Device Object (CDO) in addition to usual minifilter device objects)

and, from there, to the underlying volumes and disks. Furthermore, calls to functions such as

FltFsControlFile routine (or native equivalents) with FSCTL_MANAGE_BYPASS_IO control code are usual

while requesting and emitting BypassIO operations.

Readers will see FSCTL_MANAGE_BYPASS_IO and IOCTL_STORAGE_MANAGE_BYPASS_IO control codes

involved with minifilter drivers using BypassIO, which demands NTFS filesystem on NVMe storage device

on Windows 11 for while. You should also pay attention to requests such as FS_BPIO_OP_ENABLE,

FS_BPIO_OP_DISABLE, FS_BPIO_OP_QUERY, FS_BPIO_OP_GET_INFO and other similar ones, mainly

because they are involved with preoperation callbacks.

We can easily check the support for BypassIO feature by executing the following command:

[Figure 56] BypassIO: checking filesystem support

Returning to CDO (Control Device Object) and VDO (Volume Device Object) mentioned above, which are

optionally created by file system minifilter drivers (file systems must create a CDO, but it is optional to file

system minifilter driver, although it commonly used), it is suitable to highlight that CDO works like a

representation of minifilter driver to the user mode application, and besides of the system, of course.

Later, the FDO (filter driver object) will perform all related tasks of filtering on a given filesystem or

volume. This scheme and composition are independent of the driver handling IRP or Fast I/O. As explained

previously, IRPs are used in general operations (synchronous or asynchronous), while Fast I/O are used

over synchronous operations, offering advantage to make the accelerating the transfer between

application/user buffer and the system cache, so bypassing eventual filesystem and volume stack in the

middle of the way. Additionally, we should also remember that minifilter filesystem must implement Fast

I/O routines even if they do not support them (and, as recommended, returning FALSE).

So far, we have explained WDM (Windows Driver Model), including a series of concepts associated with

kernel drivers and minifilter drivers because all these concepts are foundations of drivers in the current

days. However, many years ago Microsoft introduced another framework to develop drivers named

Windows Driver Frameworks (WDF), which offers a kind of abstraction that simplify the driver

development and, of course, soon or later readers will reverse and analyze a sample in their daily tasks.

https://exploitreversing.com

55 | P a g e

6. Windows Driver Frameworks (WDF) review

The first facts about WDF are that:

▪ They include two important frameworks: KMDF (Kernel-Mode Driver Framework) and UMDF

(User-Mode Driver Framework).

▪ Microsoft offers its respective source code available on: https://github.com/Microsoft/Windows-

Driver-Frameworks

▪ Microsoft Visual Studio, as expected, offers a series of templates to develop KMDF and UMDF

drivers.

These frameworks (KMDF and UMDF) offer an abstraction from WDM (readers could agree that it is really

complex) and handles important functionalities such as Plug-and-Play and Power Management, and

everything is done to offer a friendly interface to developers. We have not seen any of these details in our

previous discussions because our focus is on software driver, without interacting directly with hardware.

Anyway, although the model is different, the purpose is the same, that is to manage the communication

between user applications and devices, or other drivers. I will target KMDF in this article, but UMDF drivers

must be highlighted because they offer incredibly attractive features as handling only the memory

associated with the process, having a simpler interaction with the environment, limited access to system

files and even data from users, and a series of other advantages that, eventually, might attend

requirements of a project.

In general, WDF (Windows Driver Frameworks) is composed by a central DriverEntry routine, which is

responsible for calling the WfdDriverCreate routine (this routine creates the driver object that represents

the driver), and a series of event callback functions that finally calls object methods exported by the own

framework. In other words, the programming is oriented to events, so objects support one or more of

these possible events, which are enabled according to system’s changes or even due to new I/O requests.

The best part is that the driver framework offers default routines for all possible events. The driver is not

obliged to manage any of them and, if the driver wants to override any one of default routines to handle

the respective event, so the driver needs to register a new callback (invoked when the event happen) and

notify the driver that such event happened, which provides to driver with an opportunity to perform

further processing and tasks. If readers have any issue understanding that callback concept here, think

about it as a message to signal that something relevant happened (an event), and which the driver might

have interest in handling. The WDF model follows the proposed driver stack:

▪ application → kernel → filter device object (filter driver) → function device object (function

driver) → filter device object (filter driver) → physical device object (bus driver)

As most general concepts are similar, we have to adapt our knowledge to new function names and,

eventually, concepts. As we learned previously, drivers can implement callback methods according to

expected events, and afterwards they register these callbacks to the framework. The name convention for

callback functions is EvtObjectEvent, where the Object part represents the referred framework object and

Event part represents the provided event. The KMDF also follows a well-formed syntax to its methods,

that’s Wdf[Object][Operation], where Object refers to an object involved in the operation, and Operation

refers to the method’s goal.

https://github.com/Microsoft/Windows-Driver-Frameworks
https://github.com/Microsoft/Windows-Driver-Frameworks

https://exploitreversing.com

56 | P a g e

As I had mentioned, the own framework already offers callback implementation for events, so driver needs

to implement a callback whether it needs to perform a different processing. At end of the day, readers will

realize that KMDF drivers work similarly to minifilter drivers without imposing meaningful restrictions.

One of nomenclature aspects that readers have already realized is that most (not all) objects and routines

are prefixed with “Wdf” string (upper case, lower case or mixed notation). Furthermore, you will see

names of objects like WDFDEVICE (device), WDFDPC (dpc), WDFFILEOBJECT (file), WDFINTERRUPT

(interrupt), WDFSPINLOCK (spin lock), WDFQUEUE (queue) as well as routines as WdfDriverCreate,

WdfDeviceCreate, WdmDeviceCreateSymbolicLink, WdfObjectReference,

WdfDeviceCreateDeviceInterface, WdfRequestRetrieveInputBuffer, WdfRequestRetrieveOutputBuffer,

WdfRequestRetrieveInputWdmMdl, WdfRequestRetrieveOutputWdmMdl, WdfAllocateContext

(allocated in nonpaged pool and taken as part of the object, which has an equivalent meaning of WDM

device extension), WdfIoQueueCreate and so on. Such objects have properties like ParentObject, Size,

ContextTypeInfo, and so on, that are stored into WDF_OBJECT_ATTRIBUTES structure and initialized by

WDF_OBJECT_ATTRIBUTES_INIT function. By the way, there are configuration structures associated to

objects, which hold information like pointers to the event callbacks, and nomenclature of such structures is

WDF_<object>_CONFIG, and that are usually initialized by functions/macro that also follow

WDF_<object>_CONFIG_INIT as nomenclature. Therefore, while creating a KMDF driver, readers will

follow the usual order in declaring and initializing configuration structures then initializing attributes and

finally creating an object.

Similarly, we had seen for WDM, the WDF model is composed by I/O requests, queues, memory regions

and devices, of course. Through this mechanism, when the operating system sends an I/O request to a

WDF driver, the framework is responsible for handling the dispatch operation, queueing and completion of

the request. Furthermore, as most applications will interact with drivers for reading, writing or even

controlling devices, so routines like WdfIoQueueCreate routine will be used to create a queue object that

represent the respective I/O queue (as usual, everything is about managing I/O requests and memory).

Here is appropriate to highlight that the general WDF hierarch is given by a driver object → device object

→ queue object → request object. WDF drivers also handles interrupts by calling routines like

WdfInterruptCreate routine and, as you could imagine, it will create interrupt objects to each given

interrupted and register callback functions, which I do not need to repeat the same explanation. By the

way, callbacks are usually suffixed with Evt string, so there are EvtCleanupCallback, EvtDestroyCallback,

EvtDeviceAdd, EvtIoRead, EvtIoWrite, and so on.

Certainly, KMDF is an extensive topic and has its peculiarities, but it is close to the WDM development, so

these couple of pages are enough to review basics on the KMDF.

7. Supplemental information about callbacks

Returning to callback subject, Windows offers a series of kernel callback APIs that exported by kernel

(NtosKrnl.exe + wdm.h) and which drivers can use to register their callback routines that, eventually, will

be called for specific kernel components’ events and conditions.

https://exploitreversing.com

57 | P a g e

As we are discussing kernel drivers and filter drivers, leaving a few words about this topic could be useful. If

readers are writing a kernel driver, they could use a callback object from other drivers and register a

routine (InitializeObjectAttributes() + ExCreateCallback() + ExRegisterCallback()) to be invoked when the

specific callback is triggered (a given condition happened).

The offered kernel callback functions are used mainly by security defenses to register their own callback

routines to be able to monitor the system system according to specific events and conditions, so as

expected, kernel callback functions are available to attend different purposes and goals.

The list of kernel callbacks (sometimes called as system callbacks) is really considerable, and I only will

present the definition and concepts about few of them here:

▪ CmRegisterCallbackEx(): this function registers a RegistryCallback routine, which is a routine used

by filter drivers to monitor and modify any Registry operation such as key deleting, renaming, key’s

value changing, enumeration, creation and so on. For example, malware can use this callback to

restore malicious content (for example, a malicious entry used for persistence) soon after a system

administrator has removed an entry related to persistence. As we reviewed previously, the Altitude

parameter (second parameter shown below) defines the position of the minifilter driver when

compared to other minifilters in the I/O stack. Finally, we should pay attention to the fact that the

first parameter (Function) is a pointer to the RegistryCallback routine to be registered and the third

parameter (Driver) is a pointer to a traditional DRIVER_OBJECT structure, which represents the

driver itself.

[Figure 57] CmRegisterCallbackEx()

▪ FsRtlRegisterFileSystemFilterCallbacks(): File system drivers call this function to register

notification callback routines that will be invoked when the file system performs specific

operations. Its second parameter points to a FS_FILTER_CALLBACKS structure, which holds the

entry pointer of caller-supplied notification callback routines. At end of the execution, the usual

return value is STATUS_SUCCESS or STATUS_FSFILTER_OP_COMPLETED_SUCCESSFULLY, but this

last one means it has completed an FsFilter operation.

▪ IoRegisterBootDriverCallback(): this function registers a BOOT_DRIVER_CALLBACK_FUNCTION

routine that will be invoked during the initialization phase of the boot-start drivers, and whose role

is to monitor boot-start events and return data to the kernel. For example, the ELAM (Early Launch

Anti-Malware) driver, which is a mechanism that can be used by defenses like antivirus programs,

is able to register callback methods using this function to verify issues due to lack of integrity of

other boot drivers or even Registry entries, that also could be monitored by using

CmRegisterCallbackEx routine as mentioned previously. Even out our focus, you can examine the

https://exploitreversing.com

58 | P a g e

WdBoot.sys (ELAM driver) using IDA Pro + WinDbg (in a remote setup configuration) if you want to

do. As a short example to help you to start:

▪ Open the WdBoot.sys driver (from C:\Windows\system32\drivers folder) from a remote

Windows system (we will debug it later) into IDA Pro.

▪ Search for DriverEntry routine (it is called by GsDriverEntry routine)

▪ Write down the DriverEntry’s address.

▪ Examine the WdBoot.sys driver on PEBear. Write down the Image Base.

▪ Through a remote WinDbg session (I explained steps previously), set up a breakpoint on the

remote (target) to stop execution when the driver gets loaded by executing sxe ld WdBoot.sys

and reboot the system. If you want to see all messages from debugger, execute ed

nt!Kd_DEFAULT_MASK 0xFFFFFFFF

▪ Once the system rebooted and stopped on WdBoot.sys loading, setup the breakpoint on

WdBoot!DriverEntry (remember that we don’t have symbols) by executing bp WdBoot +

0x1C000B000 – 0x1C0000000 (effectively is WdBoot + 0xB000).

▪ Type g to resume the system.

[Figure 58] Examining WdBoot’s Driver Entry on IDA Pro

[Figure 59] Examining WdBoot’s Driver using PE Bear

https://exploitreversing.com

59 | P a g e

[Figure 60] Setting

up a breakpoint at

WdBoot!DriverEntry

https://exploitreversing.com

60 | P a g e

From this point it is possible to perform all the usual investigations using WinDbg. Anyway, the part of the

driver using IoRegisterBootDriverCallback (and respective IoUnRegisterBootDriverCallback) routines

follows:

[Figure 61] Reversing a piece of WdBoot.sys

As MmGetSystemRoutineAddress routine is responsible for returning a pointer to the given function

specified by SystemRoutine parameter, which holds the pointer to “IoRegisterBootDriverCallback” string,

so the address of the callback is effectively resolved.

It seems that, after callbacks being resolved, Windows Defender will load its signatures according to line

133 above. Going a bit further, we will recognize another routine related to a callback that we already

mentioned previously (CmRegisterCallback) and even an API (ExFreePoolWithTag) responsible for freeing

memory pool region associated to provided tag (EBsg, in this case). Finally, we see the

https://exploitreversing.com

61 | P a g e

IoRegisterBootDriverCallback (remember that its pointer has been stored into SystemRoutineAddress

variable) being used to register a callback named MbEbBootDriverCallback, as shown on line 221:

[Figure 62] Reversing a piece of WdBoot.sys (part 2)

A BOOT_DRIVER_CALLBACK_FUNCTION routine is responsible for monitoring the startup of the a given

driver, and it matches the first parameter of IoRegisterBootDriverCallback routine as shown below:

[Figure 63] IoRegisterBootDriverCallback routine

That is enough about IoRegisterBootDriverCallback routine, and it is time to return and comment about

other system callbacks.

▪ IoRegisterFsRegistrationChangeEx(): this routine registers a notification routine (callback routine)

of a file system filter, which is called when a file system registers or unregisters itself. Most EDRs

monitor this routine actively. The first parameter is a pointer to a driver object for the file system

filter driver, and the second parameter is a pointer to PDRIVER_FS_NOTIFICATION routine, which is

https://exploitreversing.com

62 | P a g e

called by the file system always that it registers or even unregister itself by calling functions such as

IoRegisterFileSystem() and IoUnregisterFileSystem() respectively.

▪ IoRegisterFsRegistrationChangeMountAware(): this function aims to registers notification

routines (callback methods) of a file system filter drivers and, as expected, the second argument

points to a PSDRIVER_FS_NOTIFICATION routine, which is invoked as a file system gets mounted

(active) or unmounted (inactive). The first parameter is a pointer to a driver object for the file

system drivers, as usual.

▪ ExAllocateTimer(): this function is responsible for allocating and initializing a timer object by using

an ExTimerCallback callback routine, which Windows calls when the time interval of a timer

(represented by EX_TIMER timer object) expires.

[Figure 64] ExAllocateTimer()

Multiple rootkits have used this callback to create a timer object within a non-arbitrary threat

context to schedule operations that will be executed in a periodic way. For example, professionals

who are hunting timers might use WinDbg !timer extension to list all pending timers on system:

[Figure 65] WinDbg timer extension

https://exploitreversing.com

63 | P a g e

As a simple example about the usage of ExAllocateTimer routine, we could check any filter driver

as WoF.sys (Windows Overlay Filter) that initializes a timer object associated with a callback

named TlgAggregateInternalFlushTimerCallbackKernelMode. The reversing job of the routine

shown below can be improved a lot, but it is enough for now because we only want to highlight the

usage of one routine:

[Figure 66] ExAllocateTimer example

https://exploitreversing.com

64 | P a g e

▪ IoSetCompletionRoutineEx(): Although we already have commented about this routine at a first

moment on page 25, it is valid to review that this routine registers an IoCompletion routine, which

is usually called when the next level driver (lower driver) has completed the requested operation

related to a provided IRP. The completion routine, which executes from an arbitrary thread or even

DPC (Deferred Procedure Calls) context, is responsible for determining whether any additional

processing is required for a given IRP. As an additional information, a DPC routine (DpcForIsr()),

which is associated with a DPC object, is queued by the ISR (Interrupt Service Routine – its

execution must be short and fast) and executed at a later moment with a lower IRQL

(IRQL_DISPATCH_LEVEL) than the ISR’s high level and, in few words, it is responsible for performing

the heavy-work that has not been done by ISR. Any remaining work that has not been completed by

DpcForIsr() routine can be done by CustomDpc() routines, which are extra DPCs. The

DEVICE_OBJECT structure holds a KDPC structure member (Dpc field), as shown below, that is used

to request the mentioned DPC routine while within of ISR. Therefore, once we get any pending DPC

(its possible to list them by using !dpcs extension), we can get its respective address and perform an

overlay against the _KDPC structure to obtain a better comprehension on further details:

[Figure 67] WinDbg: examining DPC (part 1)

Before proceeding, just a note: eventually your test system doesn’t have anything pending at the exact

time you are performing this test because it depends on the current activity.

To get further information about a provided KDPC, execute:

https://exploitreversing.com

65 | P a g e

[Figure 68] WinDbg: examining DPC (part 2)

[Figure 69] WinDbg: examining DPC (part 3)

Note: the KPCR address (0x0xfffff806205434c0) came from !pcr extension’s output (not shown)

▪ KeInitializeDpc(): this routine is supplemental to the topic explained above because its role is to

initialize a DPC object and register a CustomDpc routine for such object. As expected, the second

argument is a pointer to the KDEFERRED_ROUTINE callback function that is executed after the ISR

(Interrupt Service Routine). Additionally, the CustomTimerDpc routine executes after the time

interval of a given timer object expires and, of course, readers could do an association to the

timer’s stuff mentioned previously in this article.

[Figure 70] ntoskrnl.exe: KeInitializeDPC (part 3)

https://exploitreversing.com

66 | P a g e

▪ KeInitializeApc(): this routine is used to initialize an APC (Asynchronous Procedure Calls) object. As

readers could already know, APC is a kind of kernel mechanism that is used to queue a task that will

be performed in a context of a given thread. Additionally, APCs have been used to inject code into a

user process (in alertable state) from a kernel driver, for example. There are distinct types of APC

(UserAPC, Special User APC and Kernel APC), which the first two cases are associated with APIs

such as QueueUserAPC() and NtQueueApcThreadEx2() respectively. Kernel APC is a bit different,

runs in kernel mode at IRQL = PASSIVE_LEVEL (Special Kernel APC run at IRQL = APC_LEVEL), it is

able to prompt any user mode code running at IRQL = PASSIVE_LEVEL and one of its main

structures is the _KAPC (actually, this structure makes part of a doubly-linked structure within the

_KAPC_STATE structure, which makes part of the KTHREAD structure in the kernel) that must be

allocated from a NonPagedPool memory. At end, Kernel APC works as an interruption because it

can happen at almost any time.

▪ PsSetLoadImageNotifyRoutine(): that is a well-known routine on Windows, and it registers a

callback routine (provided by NotifyRoutine parameter as a pointer and typed as

PLOAD_IMAGE_NOTIFY_ROUTINE) that will be notified whenever an image is loaded. Actually, this

routine is supplemented by other similar routines such as PsSetCreateProcessNotifyRoutine (it

works at an equivalent way, but adding a callback routine that will be invoked whenever a

processes to be called or terminated) and PsSetCreateThreadNotifyRoutine (same modus operandi

but related to thread creation and termination). About registering a callback to be notified about

process creation and termination, it is interesting to remember about

PsSetCreateProcessNotifyRoutineEx and PsSetCreateProcessNotifyRoutineEx2 too. As a simple

example, Windows drivers like mssecflt.sys (Microsoft Security Events Component file system

filter driver), which has suffered multiple fixes in last months, uses

PsSetCreateProcessNotifyRoutineEx, PsSetLoadImageNotifyRoutine,

PsSetCreateThreadNotifyRoutine actively:

[Figure 71] mssecflt.sys filter driver using callbacks

▪ KeRegisterBugCheckCallback(): this routine is responsible for registering BugCheckCallback

routine (KBUGCHECK_CALLBACK_ROUTINE), which is executed when Windows issues a bug check.

https://exploitreversing.com

67 | P a g e

Many years ago, I could find malware threats using this callback to prevent digital forensic tools to

dump the memory image, so also preventing researchers of analyzing memory.

▪ ObRegisterCallbacks(): this routine is one of most interesting ones because it registers a list (given

by OB_CALLBACK_REGISTRATION structure) of callback routines to thread, process and desktop

handle operation. Additionally, there is also the ObUnregisterCallbacks routine to revert all

callback’s registrations. Besides the obvious usage by malware threats (including rootkits), I have

seen it being used in anti-cheats too and, of course, Microsoft drivers also use it, of course. For

example, in the piece of code below that also comes from mssecflt.sys (it is the SecObAddCallback

function) , readers can clearly see the call for ObRegisterCallbacks routine, its parameters being

setup and even a a reference to a PreOperationCallback being setup few lines above:

[Figure 72] mssecflt.sys filter driver using ObRegisterCallbacks

There are other callbacks, and a few of them are not documented, but those ones are enough to illustrate

the idea. The advantage in using callbacks is clear because it allows to establish reactive protections and

measures (for example, enforcing a protection) that is enabled when a relevant action happens in the

system. As mentioned, these callbacks are extensively used by protective defenses as auxiliary for malware

detection.

An interesting experience is learning about callbacks that are configured to be executed as a reaction of a

system event. As expected, we have many ways to accomplish this task, and fortunately there WinDbg

extensions that makes easy to retrieve different information from system:

▪ wdkgark: https://github.com/swwwolf/wdbgark

▪ SwishDbgExt: https://github.com/comaeio/SwishDbgExt and

https://gitlab.com/opensecuritytraining/swishdbgext.git

Both extensions are old, and not all commands work as expected in recent Windows versions, but they are

still great contributions. In both cases, you must clone the project with git clone command and build them.

Personally, I always copy my extensions to the appropriate WinDbg extension folder (in this case is

C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\winext), but you can store extensions wherever

you want, and afterwards passing the full path (without double quotes or spaces) while running the !load

https://github.com/swwwolf/wdbgark
https://github.com/comaeio/SwishDbgExt
https://gitlab.com/opensecuritytraining/swishdbgext.git

https://exploitreversing.com

68 | P a g e

extension command. Anyway, you should make sure that you are using the right WinDbg version (x64) with

the correct extension. A simple execution retrieving callbacks using SwishDbgExt follows:

[Figure 73] Listing callbacks using SwishDbgExt.dll

https://exploitreversing.com

69 | P a g e

Of course, readers could retrieve a specified list manually. For example, get a list of

PsCreateProcessNotifyRoutines by executing the following command:

0: kd> .for (r $t0=0; $t0 < 9; r $t0=$t0+1) { r $t1=poi($t0 * 8 + nt!PspCreateProcessNotifyRoutine); .if ($t1
== 0) { .continue }; r $t1 = $t1 & 0xFFFFFFFFFFFFFFF0; dps $t1+8 L1;}

ffffb788`6fedff98 fffff804`5a5d2840
ffffb788`705fe2b8 fffff804`6115f6b0
ffffb788`705fea68 fffff804`5a74d470
ffffb788`705fea08 fffff804`6189c480
ffffb788`70c30b68 fffff804`61e00750
ffffb788`70c31a38 fffff804`605d9060
ffffb788`70c31ac8 fffff804`66bba740
ffffb788`728ac4a8 fffff804`67b90a60
ffffb788`7208b488 fffff804`695b7d00

We noticed that all addresses above do not have symbols associated, but the reason is that I tested the

command in Windows Inside Preview, and I didn’t have time to download its respective symbols.

Repeating the same procedure on a daily Windows 11 we have:

0: kd> dd nt!PspCreateProcessNotifyRoutineCount L1
fffff800`16b5377c 00000006
0: kd> .for (r $t0=0; $t0 < 6; r $t0=$t0+1) { r $t1=poi($t0 * 8 + nt!PspCreateProcessNotifyRoutine); .if ($t1
== 0) { .continue }; r $t1 = $t1 & 0xFFFFFFFFFFFFFFF0; dps $t1+8 L1;}

ffffba8a`6b49c548 fffff800`195b5500 cng!CngCreateProcessNotifyRoutine
ffffba8a`81bce5c8 fffff800`2db7f6b0 WdFilter+0x4f6b0
ffffba8a`6dff3a38 fffff800`193ec460 ksecdd!KsecCreateProcessNotifyRoutine
ffffba8a`6dff3888 fffff800`1a68fc30 tcpip!CreateProcessNotifyRoutineEx
ffffba8a`746f7408 fffff800`1abb8130 SysmonDrv+0x8130
ffffba8a`746f7bb8 fffff800`1ac7d980 iorate!IoRateProcessCreateNotify

Another way to get the same result would be executing the following sequence of commands:

[Figure 74] Retrieving PsCreateProcessNotifyRoutine callbacks

https://exploitreversing.com

70 | P a g e

As you can see, first I got the number of callback functions then I made a simple loop to retrieve the

response. Certainly, readers might ask the reason I am using PspCreateProcessNotifyRoutine (with an

extra “p” in the name) and not PsCreateProcessNotifyRoutine (the name of the function responsible for

registering callback routines). It happens that PspCreateProcessNotifyRoutine (with an extra “p” in the

name) is an array the stores up to 64 callback routines.

If readers want to repeat the procedure using wdbgark, so I suggest the following commands:

▪ !load C:\Users\Administrator\Desktop\remote\wdbgark.dll (example)

▪ !wdbgark.help

▪ !wa_systemcb

The output is extensive, so I will not include it here, but readers will like it because it is very complete.

Finally, if you want to test, you can use Volatility to retrieve callbacks from Windows. To install Volatility 3

on Linux (my environment is an Ubuntu 22.10), execute the following steps:

▪ git clone https://github.com/volatilityfoundation/volatility3.git

▪ pip install -r volatility3/requirements.txt

▪ wget https://downloads.volatilityfoundation.org/volatility3/symbols/windows.zip

▪ mv windows.zip volatility3/volatility3/symbols/

Acquire the target system’s memory by using one of available:

▪ Surge (commercial tool): https://www.volexity.com/products-overview/surge/

▪ WinPmem: https://github.com/Velocidex/WinPmem/releases

▪ Magnet RAM Capture: https://www.magnetforensics.com/resources/magnet-ram-capture/

▪ Belkasoft RAM Capturer: https://belkasoft.com/ram-capturer

▪ Magnet DumpIt for Windows: https://www.magnetforensics.com/resources/magnet-dumpit-for-

windows/

You can list all enabled callbacks. As the output is long, so I used grep command to filter only one callback

type and I also run the command on another Windows 11 with 4 GB (and not 64 GB) to speed up the test:

[Figure 75] Retrieving PsCreateProcessNotifyRoutine callbacks using Volatility 3

Having addresses of each callback we can do further investigation. Readers can examine other callbacks

according to the context.

As I had mentioned previously, this section is only a fast review, and there are more details about the

subject, but eventually it is enough for now.

https://github.com/volatilityfoundation/volatility3.git
https://downloads.volatilityfoundation.org/volatility3/symbols/windows.zip
https://www.volexity.com/products-overview/surge/
https://github.com/Velocidex/WinPmem/releases
https://www.magnetforensics.com/resources/magnet-ram-capture/
https://belkasoft.com/ram-capturer
https://www.magnetforensics.com/resources/magnet-dumpit-for-windows/
https://www.magnetforensics.com/resources/magnet-dumpit-for-windows/

https://exploitreversing.com

71 | P a g e

8. Reversing and Windows Filtering Platform (WFP)

As I already described, programming and handling kernel events is a different approach and, as expected,

the nature of these mechanisms is also different, starting by the memory organization, where the heap is

referred by kernel pools, and these ones are presented with distinct characteristics. Actually, in recent

versions of Windows 10 and 11, the kernel is using the Segment Heap instead of being’ using the old pool

scheme, but concepts are the same. Check for the following structures:

a. _EX_POOL_HEAP_MANAGER_STATE:

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_P

OOL_HEAP_MANAGER_STATE

b. _EX_HEAP_POOL_NODE:

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_H

EAP_POOL_NODE).

The heap can be NonPagedEx (non-paged and non executable), NonPaged (non-paged), Paged, Session

and Special, although we will be using the first three types here. The non-paged heap (or pool) refers to

memory pages that can not be sent (paged out) to the disk and, of course, in the case of paged heap (or

pool) such memory pages can be sent to the disk. Modern mechanisms as Segment Heap also bring other

different concepts in terms of its organization like Low Fragmentation Heap (used for allocations lower

than 512 bytes, and now any allocation there is completely randomized in terms of location’s address),

Variable Size (for allocations between 512 bytes and 128 KB), Backend (for allocations between 128 KB

and 512 KB) and, finally, Large Block (for allocations greater than 512 KB).

Unfortunately (for researchers), many protections have been introduced or improved, and the main

protections are Kernel Mode Code Signing (KMCS), which is enforced by ci.dll and that demands that any

loaded driver to be signed, kASRL (kernel address space randomization), Hypervisor Code Integrity

(HVCI), which is VBS-based and protects the kernel against exploitation by preventing executable and

writable (W^X) privileges at same time for a page allocation on the kernel, so preventing any malware and

shellcode execution there. Additionally, any allocation must come from a signed driver and helped by the

Secure Kernel (running on VTL 1). Exploiting kernel driver’s vulnerabilities have become harder in the last

years. No doubt, this topic is incredibly attractive and could fill up dozens of pages, but these introductory

paragraphs are enough for us, and I recommend readers search for details on books, articles and MSDN

pages from Microsoft.

Returning to kernel drivers themselves, it could be quite complicated to know the starting point to initiate

an analysis because most drivers have dozens or hundreds of routines to examine and, of course, having

reference points are useful. Eventually an exception to this rule are malicious drivers, which might be large,

but usually are not, and sometimes it could make tasks simpler.

No doubt, all concepts I have mentioned along of this article are essential as well as all referred routines

that, almost certainly, readers will find when opening it on IDA Pro. For example, DriverEntry() is the first

and obvious choice because it works as a routine to invoke other important routines under certain

conditions. However, I want to comment about other aspects of the subject that will be useful for you.

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_POOL_HEAP_MANAGER_STATE
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_POOL_HEAP_MANAGER_STATE
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_HEAP_POOL_NODE
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_EX_HEAP_POOL_NODE

https://exploitreversing.com

72 | P a g e

As we learned, applications submit requests to other drivers by calling routines like DeviceIoControl using

device I/O controls (which are also known as IOCTL), which forces the I/O Manager to create and submit

an IRP. At the same way, even other drivers can submit requests to the target driver by using well-known

functions such as IoCallDriver (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-iocalldriver) and IoBuildDeviceIoControlRequest

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

iobuilddeviceiocontrolrequest), whose macro and routine are associated with the

IRP_MJ_INTERNAL_DEVICE_CONTROL major code. As drivers has a device object by the IoCreateDevice

routine (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice),

and a link for such device object and the respective device name are given by a symbolic link created by

the IoCreateSymbolicLink routine (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink).

Probably readers already noticed that, at this point, the next most important piece of code is the

initialization of the dispatch routines and, in special, the array of the function pointers that is contained by

MajorFunction member field that makes part of the _DRIVER_OBJECT structure. As expected, there are

multiple dispatch routines and, sometimes, it is hard to examine all of them, so maybe a good approach

would be starting by the most used one such as DispatchRead (IRP_MJ_READ code),

DispatchWrite(IRP_MJ_WRITE code), DispatchCreate (IRP_MJ_CREATE code) and DeviceIoControl|

IoBuildDeviceIoControlRequest (IRP_MJ_DEVICE_CONTROL | IRP_MJ_INTERNAL_DEVICE_CONTROL

codes) routines. This last one is a consequence of calling DeviceIoControl |

IoBuildDeviceIoControlRequest | IoCallDriver routines (mentioned above), and it is responsible for

sending a control code (IOCTL) to a target driver. Thus, it becomes the most important for us because it

shows the message’s flow between application and driver, or even between the current driver and other

supportive ones. While there is a list of I/O control codes defined in the SDK header files, most of these

IOCTL codes are private and defined by drivers, and it might turn analysis a bit harder. No doubt, learning

about these I/O control codes through an eventual reverse engineering task is really useful for getting a

better understanding of the kernel driver.

If readers need to a list of standard and well-known I/O control codes, so eventually some of them are

available on Internet: http://www.ioctls.net/

So far we have the following key points to be regarded at first moment of a driver analysis:

▪ Finding the DriverEntry routine.

▪ Take an initial note about key routines being invoked from DriverEntry routine as callback routines

for reading, writing and sending control codes to a device driver.

▪ Searching for the symbolic link associated with the device object.

▪ Finding the device name (DeviceName).

▪ Analyzing I/O control codes, device object and buffers used by routines such as DeviceIoControl

and IoBuildDeviceIoControlRequest.

Sure, these items are only a starting point. If readers are wondering how the IOCTL codes, which are used

with IRP_MJ_DEVICE_CONTROL requests (created by invoking DeviceIoControl() for communication

between user-mode application and kernel driver) or IRP_MJ_INTERNAL_DEVICE_CONTROL requests

(created by invoking IoBuildDeviceIoControlRequest for communication between two kernel drivers),

there is a macro as shown below:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iobuilddeviceiocontrolrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iobuilddeviceiocontrolrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
http://www.ioctls.net/

https://exploitreversing.com

73 | P a g e

#define IOCTL_Device_Function CTL_CODE(DeviceType, Function, Method, Access)

IOCTL definition (it is a 32-bit value) is given by four components:

▪ DeviceType: it determines the device type.

▪ FunctionCode: it is an indicative about the function to be executed by the driver.

▪ TransferType: it determines how data will be transferred between the caller (user-mode

application or another driver) and the target driver that is responsible for handling the IRP. Possible

values are METHOD_BUFFERED, METHOD_IN_DIRECT or METHOD_OUT_DIRECT,

METHOD_NEITHER.

▪ RequiredAccess: this parameter determines the type of access requested by the caller to open the

file object that represents the device. Possible values: FILE_ANY_ACCESS, FILE_READ_DATA,

FILE_READ_DATA and FILE_WRITE_DATA.

I think I have already provided enough concepts for this article and the next ones.

It is not my intention to analyze a malicious driver (rootkit) in this article, but I will do a fast analysis of one

well known sample named Netfilter (also known as Retliften), which work as a trojan (x64) and that, at

past, was signed (at that time) by Microsoft by mistake. To download it from Malware Bazaar, execute:

malwoverview.py -b 5 -B e8e7f2f889948fd977b5941e6897921da28c8898a9ca1379816d9f3fa9bc40ff

If readers want to list and download other potential malicious drivers, this task can be done by executing

the following command:

[Figure 76] Listing malicious drivers from Malware Bazaar using Malwoverview (truncated output)

The next step is to open it on IDA Pro and observe a few facts.

https://exploitreversing.com

74 | P a g e

After launching IDA Pro and before jumping to DriverEntry routine, do not forget few basic steps:

▪ Force decompilation of the entire driver by going to File → Produce file → Create C File.

▪ Go to Edit → Plugins → Hex-Rays Decompiler → Options and change Default radix value to 16.

▪ As we are handling an x64 driver, open Type Libraries View (SHIFT+F11) and add (INSERT key) two

libraries: ntddk64_win10 and netapi64_win10.

▪ Open the Signatures View (SHIFT+F5) and check whether the following signatures are present:

ms64wdk, v64seh and vc64ucrt. If they are not, add them.

▪ Type CTRL+E to go to the Entry Point (DriverEntry).

 [Figure 77] DriverEntry routine

https://exploitreversing.com

75 | P a g e

Likely readers will find common structures and routines that we have commented on in this article and,

hopefully, it will not be hard. Actually, there are references that are familiar for us:

▪ DriverEntry: driver’s entry point.

▪ DriverObject: a variable of type DRIVER_OBJECT, which represents the image of a loaded driver.

▪ DriverUnload: routine used to unload the driver.

However, there are two routines that we don’t comment about yet:

▪ RtlCopyUnicodeString: as you already realized, this routine copies a string to a destination buffer.

Remember that Rtl means Real Time Library.

▪ WdfVersionBind: this routine binds the driver to a specific WDF library version.

I could find definition of this function (and also WdfVersionUnbind) on

https://github.com/microsoft/Windows-Driver-

Frameworks/blob/main/src/framework/shared/inc/private/common/fxldr.h , which have the following

prototypes:

NTSTATUS
WdfVersionBind(
 __in PDRIVER_OBJECT DriverObject,
 __in PUNICODE_STRING RegistryPath,
 __inout PWDF_BIND_INFO BindInfo,
 __out PWDF_COMPONENT_GLOBALS* ComponentGlobals
);

NTSTATUS
WdfVersionUnbind(
 __in PUNICODE_STRING RegistryPath,
 __in PWDF_BIND_INFO BindInfo,
 __in PWDF_COMPONENT_GLOBALS ComponentGlobals
);

Readers already noticed that there are two types that we don’t do not know anything about such as

PWDF_BIND_INFO and PWDF_COMPONENT_GLOBALS. Usually, I have used two approaches find this

information:

▪ Cloning the repository (git clone https://github.com/microsoft/Windows-Driver-Framework) and

search recursively for the structures by using: findstr /S <string> *.

▪ Searching for structure definitions on the excellent websites such as

https://github.com/winsiderss/systeminformer and https://doxygen.reactos.org/.

Unfortunately, you will discover that these structures also mention other ones in their definitions, but

hopefully you will have all of them.

If you want to improve the WdfVersionBind definition on IDA’s idb (it is not really necessary here) then it

will be necessary to add all structure definitions into Local Types (SHIFT+F1):

https://github.com/microsoft/Windows-Driver-Frameworks/blob/main/src/framework/shared/inc/private/common/fxldr.h
https://github.com/microsoft/Windows-Driver-Frameworks/blob/main/src/framework/shared/inc/private/common/fxldr.h
https://github.com/microsoft/Windows-Driver-Framework
https://github.com/winsiderss/systeminformer
https://doxygen.reactos.org/

https://exploitreversing.com

76 | P a g e

[Figure 78] Local types being declared and added into idb

Multiple entries will be created separately in the Local Types View, so right-click all of them and choose

Synchronize to idb option.

[Figure 79] Local types being declared and added into idb

There will not be an amazing effect in the code for this specific case, but this procedure is still valuable to

explain to readers how to proceed in similar cases. Anyway, by going to sub_140003C20 →

sub_14000395C readers will easily identify the device name associated with the driver:

[Figure 80] Device name being revealed

https://exploitreversing.com

77 | P a g e

Moving into sub_140005284 routine (not shown in the last image, but only three instructions below), we

will find the following content:

[Figure 81] sub_140005284 routine

From the last page we learned that this malicious driver named NET_FILTER is likely controlling (monitoring

or even altering) the network filtering behavior through the network communication. Although I didn’t

have explained this stuff previously, APIs to interact with network stack on Windows are offered by the

WFP (Windows Filtering Platform). In terms of nomenclature, the WFP architecture offers network stack

composed by layers (there are about a hundred of them and each one has a GUID associated), which each

layer can be composed by zero or more filters, and zero or more associated callout drivers, which are

responsible of executing by processing the data. Yes, I know that concepts here might be hard to

understand and, eventually, readers are not used to them, so a quick introduction might be useful at this

point.

A good advantage of choosing this malicious driver is that I can superficially comment about WFP

(Windows Filtering Platform), which is an amazing and powerful resource that can be used as useful

method to intercept and manipulate network data and, as everything in information security area, it can

be used to good and bad purposes. The malicious driver itself is not important or relevant for us, but

techniques and concepts definitely are. Therefore, beyond learning basic concepts about WFP, it will be

possible to provide a preview of the technology applied to a real case and even restricted to this article, to

try to correlate general concepts and details about the WFP framework with such analysis.

https://exploitreversing.com

78 | P a g e

The WFP (Windows Filtering Platform) is composed by the following large components:

▪ Filter Engine: the component is responsible for performing the filtering task, calling callouts based

on the classification and, at end, allow or not a determined traffic.

▪ Base Filtering Engine: this component is a macro component in the WFP, and it ties filters, reports,

statistics, security model and configuration together.

▪ Shims: this component represents kernel mode components that actually make the filtering

decision based on the classification.

▪ Callout: this component, as we learned so far, is a function that effectively permit, block, modify

and even reinject a network traffic. As expected, they must be registered to WFP layers.

In few words, we can directly or indirectly interact with multiple components and subcomponent of the

WFP such as:

▪ Filters: they are involved in the classification then they can be interpreted as rules to accept or

block network traffic. Filters are organized within sublayers, and the order is given by the weight,

which is similar to altitude for minifilter drivers.

▪ Layers: they work as the filter’s organization inside the filter engine, and cannot be removed.

▪ Sublayers: they make part of layers, and generally handle exceptions in rules or a particular

scenario. They can be added or removed, and there is a set of sublayers that are inherited by

layers.

▪ Callout: they are a set of functions actively involved in the classification process as permitting or

blocking network data. Callouts can be added or removed.

▪ Shims: it is the kernel-mode component that is responsible for making classifying decisions on

filters of a specific layer. In other words, the shim component starts the classification, which is

composed by applying the filters to, at the end, decide if a network traffic should be blocked or

allowed.

The sequence of components involved in the processing is network packet → network stack → shim →

filters (from a layer) → callouts → shims (actually performing and following the filtering decision).

Decisions can be simplified as permitting (FWPM_ACTION0.type = permit) or blocking

(FWPM_ACTION0.type = block), but there are few nuances:

▪ a block decision overrides a permit decision.

▪ a block decision is a final decision, but it still depends on the flag described on the next line.

▪ there is a flag named FWPS_RIGHT_ACTION_WRITE that enables and controls whether a lower

sublayer (remember about weight concepts) can override a decision.

▪ A block decision made by a callout is a soft decision and a block decision made by a filter is a hard

decision.

Returning to the code, readers see a series of functions being called, and in few words their meaning

follow:

▪ FwpmEngineOpen0: it opens a session to the filter engine and, as expected, returns a handle to it.

▪ FwpmTransactionBegin0: starts a transaction with the current session and, to accomplish this task,

it uses the handle to the opened session returned by FwpmEngineOpen0 routine.

https://exploitreversing.com

79 | P a g e

▪ Inside of the sub_140004F2C routine, we have FwpsCalloutRegister1 function, which is responsible

for registering a callout. This function receives a pointer to Device Object, a pointer to callout

structure (typed as FWPS_CALLOUT1_) and returns a calloutId that is used to identify the callout

within the filter engine. The sub_140004F2C routine, FwpsCalloutRegister1 function and

FWPS_CALLOUT1_ structure is shown below:

[Figure 82] sub_140004F2C contains the FwpsCalloutRegister1 routine

[Figure 83] FwpsCalloutRegister1 routine

[Figure 84] FWPS_CALLOUT1_ structure

▪ The interpretation for members of callout structure (FWPS_CALLOUT1_) is direct:

▪ first member (calloutKey) contains the GUID

(0BABE0A0B870EFD9A4854F0780CF72951h);

▪ the second member represents flags (zero);

▪ the third member (classifyFn) contains a pointer to a function that works as a

notification (trigger) to invoke the callout whenever there is network data;

https://exploitreversing.com

80 | P a g e

▪ the fourth member (notifyFn) is a pointer to a function that will be called when any filter

using this callout is added or deleted, as well associated events with callout happen.

▪ the fifth parameter (flowDeleteFn) holds a pointer to a function that will be invoked

when the data flow being processed by the callout is finished.

The sub_140004FB8 is the most important routine so far:

[Figure 85] sub_140004FB8: invoking relevant calls

https://exploitreversing.com

81 | P a g e

As highlighted in the code, there are three key subroutines being called:

▪ FwpmCalloutAdd0: this routine is responsible for adding a new callout to the system and its

prototype is DWORD FwpmCalloutAdd0([in] HANDLE engineHandle, const FWPM_CALLOUT0

*callout, PSECURITY_DESCRIPTOR sd,[out, optional] UINT32 *id). The first parameter is a handle

to the open session to the filter engine, the second parameter is a pointer to the callout object

(FWPM_CALLOUT0 structure) and the last parameter represents the output, which is a runtime

identifier.

[Figure 86] FWPM_CALLOUT0 structure

▪ FwpmSubLayerAdd0: this routine adds a sublayer to the system, and its prototype is given is

DWORD FwpmSubLayerAdd0([in] HANDLE engineHandle, [in] const FWPM_SUBLAYER0

*subLayer, [in, optional] PSECURITY_DESCRIPTOR sd). The second argument represents the

sublayer to be added.

[Figure 87] FWPM_SUBLAYER0 structure

▪ FwpmFilterAdd0: this routine adds a new filter object to the system, and its prototype is DWORD

FwpmFilterAdd0([in] HANDLEengineHandle, [in] const FWPM_FILTER0 *filter, [in, optional]

PSECURITY_DESCRIPTOR sd, [out, optional] UINT64 *id), whose second parameter is a pointer to

the filter object to be added and the fourth parameter, similar to the FwpmCalloutAdd0,

represents the output as a runtime identifier.

Line 7 from the last figure has a reference to xmmword_140007680. Actually, if we follow this data

reference, we will see a big hexadecimal number. Pressing “U hotkey” (or even “A hotkey”), we will see a

Unicode string, but without an appropriate representation (actually, it is not necessary to press U or A hot

keys, and I show it to prove that is a Unicode string). Selecting all lines containing characters and going to

Edit → Strings → Unicode, and the “redirectCalloutV4” string will pop up. There are other Unicode strings

being used by the pseudo code within this routine, so readers can repeat the same approach for them.

After handling strings and renaming variables, we have the following pseudo code:

https://exploitreversing.com

82 | P a g e

[Figure 88] sub_140004FB8: improved code

https://exploitreversing.com

83 | P a g e

[Figure 89] FWPM_FILTER0 structure (from FwpmFilterAdd0 routine)

From the pseudo code, we have that:

▪ The callout is displayed as “redirectCalloutV4”.

▪ The callout’s description is “IPv4 callout for redirect”.

▪ Remember that a callout object is represented by FWPM_CALLOUT0 structure.

▪ The displayData field from FWPM_CALLOUT0_ structure is represented by the

FWPM_DISPLAY_DATA0 structure, which is composed by wchar_t pointers that are name and

description fields (check for lines 11 and 12).

▪ On line 6, flags (from FWPM_CALLOUT0_ structure) are zero, but it could be

FWPM_CALLOUT_FLAG_PERSISTENT (0x00010000), FWPM_CALLOUT_FLAG_PERSISTENT

(0x00020000) and FWPM_CALLOUT_FLAG_REGISTERED (0x00040000) values.

▪ The calloutKey identifies a session and applicableLayer indicates which layer such callout will be

used, so this field forces that only filters from this provided layer are allowed to invoke the callout.

▪ The sublayer’s description is “Sublayer for redirect” and its displayName is “redirect for Sublayer

(lines 27 and 30).

▪ The sublayer, which has a FWPM_SUBLAYER0 structure associated, is also identified by a GUID in

the subLayerKey. Sure, there is a list of built-in sublayers, but in this specific case there is a

provided key (check for line 24). If we follow the key reference we will find the following

information:

[Figure 90] Sublayer’s key (from FWPM_SUBLAYER0 structure)

https://exploitreversing.com

84 | P a g e

▪ To format this GUID I used the following simple IDC script:

[Figure 91] IDC script to format GUID

▪ On the IDA Pro command line, run this macro proving the address of the start of the GUID:

Guid(0x00000001400084F8) == {AE1E820A-C60A-42A8-B4A2-9ACFB050387F}.

▪ The weight of the sublayer is 0xFFFF (line 29), which means that it is the first to be invoked.

▪ The number of filter conditions (numFilterConditions) is zero. Thus, there is not any established

condition to invoke the filter.

▪ The display’s name of the filter is redirectFilterV4 and its respective description is “IPv4 filter for

redirect” (lines 42 and 45).

▪ The filter’s action type is FWP_ACTION_CALLOUT_TERMINATING, which basically forces

invoking a callout that always returns block or permit. To show this string representation, I

searched for a macro (M hotkey).

▪ The FWPM_FILTER0_.weight.type equal to FWP_UINT64 (line 48) means that the Base Filtering

Engine will use the provided value as weight, which is 0xFFFFFFFFFFFFFFFF (lines 37 and 50).

▪ On line 53, calloutKey is the GUID for a callout that is valid in the layer (line 16) and layerKey

(line 64) holds the GUID which the filter is hosted, and it matches against the line 17.

▪ On line 55, finally the code adds a filter object into the system by calling FwpmFilterAdd0

routine, which used the filter object constructed in previous lines.

Readers already noticed that WFP is basically a set of hooks inside the network stack and also filtering

engine, which allow us interacting, monitoring and eventually controlling the network data information. By

the way if you are wondering about the meaning of FWPM, it is Filtering Windows Platform Management,

which is an appropriate name for the framework. Therefore, apparently the malware is adding a new

sublayer, filter and associated callout to handle the IPv4 communication that, in this case, it is working as

an IPv4 redirector to another IP address, but it early to conclusions. We also have mentioned an “arbitrary

GUID” and there is nothing new here because as a callout is a common kernel driver, any GUID can be

generated by Visual Studio and likely the malware’s author did it.

https://exploitreversing.com

85 | P a g e

On purpose I quickly commented about the the sub_140004F2C routine (Figure 82), but we must

remember that is this routine which is responsible for registering the callout with the filter engine.

Additionally, its members like classifyFn (points to a function that will be called whenever there is data to

be processed) and notifyFn (points to a function that is called whenever data flow that is being processed

is terminated) from the FWPS_CALLOUT1_ structure are relevant.

The classifyFn is actually a callout of the callout, and its prototype is given the following:

[Figure 92] FwpsCalloutClassifyFn1

This callback has the following parameters:

▪ inFixedValues: it contains a pointer to an FWPS_INCOMING_VALUES0 structure, which holds the

values for each of data fields in the layer being filtered.

▪ inMetaValues: it contains a pointer to an FWPS_INCOMING_METADATA_VALUES0 structure,

which holds the values of each metadata field being in the layer being filtered.

▪ layerData: it contains a pointer to a structure describing the data being filtered.

▪ classifyContext: it contains a pointer to context data.

▪ filter: it holds a pointer to an FWPS_FILTER1 structure.

▪ flowContext: it holds the context associated with data flow.

▪ classifyOut: it is a pointer to an FWPS_CLASSIFY_OUT0 structure, which receives the return that

will be returned by classifyFn1 function to the caller.

From Figure 82, we know that:

▪ sub_1400053A0 is the classifyFn callout.

▪ sub_140005520 is the notifyFn callout.

Moving inside the sub_1400053A0 subroutine (classifyFn callout), we will not see a friendly aspect,

unfortunately (check Figure 93 ahead). Thus, I performed the following steps:

▪ I renamed (N hotkey) all its parameters according to prototype described on

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-

fwps_callout_classify_fn1.

▪ I added (SHIFT + F9 → INS → Add standard structure) all missing structures:

FWPS_INCOMING_VALUES0, FWPS_INCOMING_METADATA_VALUES0, FWPS_FILTER1,

FWPS_CLASSIFY_OUT0_ and FWPS_INCOMING_METADATA_VALUES0_.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn1

https://exploitreversing.com

86 | P a g e

▪ I changed all argument’s type (Y hotkey) according to function’s signature.

▪ I renamed variables over the code and applied two macros (M hotkey).

The result on Figure 94 is far from being perfect, but it is already possible to have a better idea view:

[Figure 93] Original sub_1400053A0

https://exploitreversing.com

87 | P a g e

[Figure 94] Improved sub_1400053A0 (classifyFn)

https://exploitreversing.com

88 | P a g e

[Figure 95] Improved sub_1400053A0 (second part): classifyFn

Analyzing the resulting function, we can do the following observations:

▪ The FWPS_CALLOUT_ structure (as shown on Figure 86 and applied on Figure 82), which is used

and associated to the FwpsCalloutRegister routine, was our starting point to get at this point of

analysis because it involves three relevant callouts such as classifyFn, notitfyFN and flowDeleteFn

and, at this moment, we are analyzing classifyFn. The route up to this point is sub_140004F2C →

sub_1400053A0.

▪ Therefore, on line 18 (Figure 94), the layerId field, which determines the runtime filtering layer, is

tested and verified whether is equal to FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 (TCP traffic – a

sender|client component). This filtering layer allows any modification of remote address and port

of outgoing connections, so it is involved with redirecting.

▪ The “ALE” string means Application Later Enforcement and, as expected, is composed of multiple

filtering layers and also matching discard layers, which are involved in logging.

▪ Sometimes readers will find FWPM (Filtering Windows Platform Management) data types, which

are related to management tasks (callouts and adding filters) and other times will see FWPS data,

which is associated to callout data types (the actual filtering). There are counterparts on both sides,

although FWPS data types are usually smaller than FWPM data types. That is the reason we see a

layerId field being compared to FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 (0x42 – represented

by 16 bits) while for FWPM filtering layers that GUIDs have 16-bytes. Furthermore, there are other

subtle differences that will not be commented on here.

▪ On line 24, if the layerId is not FWPS_LAYER_ALE_CONNECT_REDIRECT_V4, the decision is

FWP_ACTION_PERMIT (loaded into actionType field), which means that the network filter allows

the network data to be transmitted or received. It could be suitable to know that classifyOut, which

is a member of FwpsCalloutClassifyFn1 callout, is a pointer to FWPS_CLASSIFY_OUT0 structure,

and it receives a decision returned by the classifyFn callout function. Possible values are

FWP_ACTION_PERMIT (our case), FWP_ACTION_BLOCK and FWP_ACTION_CONTINUE.

FWP_ACTION_NONE. Thus, at the end, the final decision is taken by the classifyFn callout function.

▪ The FwpsAcquireClassifyHandle0 routine is responsible for generating a classification handle that

will be used for asynchronous classification and, most importantly, data modification in other

https://exploitreversing.com

89 | P a g e

functions such as FwpsApplyModifiedLayerData0, FwpsAcquireWritableLayerDataPointer0,

FwpsAcquireWritableLayerDataPointer0 and FwpsReleaseClassifyHandle0 functions. All of these

routines are present within sub_140005524 routine (line 74).

Before proceeding, remember: FWPM refers to WFP user mode objects identified by GUIDs and FPWS

refers to WFP kernel mode objects identified by LUIDs (locally unique identifier). Once again, the

execution flows take to another routine, sub_140005524, which is composed of a series of calls related

directly or indirectly to callouts. As usual, it is interesting to show the code before any treatment as

presented on the next page:

[Figure 96] sub_140005524: original code

There few WFP routines being called, so a summary about them follows:

▪ FwpsAcquireWritableLayerDataPointer0: this function returns layer-specific data that can be

inspected or even changed. The second parameter (filterId) is the same from classifyFn routine’s filter

parameter, and its internal organization is given by FWPS_FILTER1_ structure, which establishes

subLayerWeight, numFilterConditions, action and filterCondition, among other fields.

https://exploitreversing.com

90 | P a g e

▪ FwpsReleaseClassifyHandle0: this routine releases the previously acquired classification handle by

FwpsAcquireClassifyHandle0 routine (check page 87).

▪ FwpsApplyModifiedLayerData0: this function applies changes produced by the

FwpsAcquireWritableLayerDataPointer0 routine.

▪ FwpsCompleteClassify0: this routine completes a pending classify request.

Thus, after performing a quick analysis and a bit of reversing, the improved version of sub_140005524

follows below:

[Figure 97] sub_140005524: improved code view

No doubts, the presentation of the code is better than the original version, and I did the following:

▪ I renamed a1 to arg_1 and a2 to arg_2 (N hotkey).

▪ As arg_1 apparently was clearly a structure, so I created one by right-clicking it and choosing Create

a new structure type.

▪ I used the prototype of FwpsAcquireWritableLayerDataPointer0 routine to rename the arguments.

https://exploitreversing.com

91 | P a g e

▪ I applied macros such as FWP_ACTION_PERMIT and FWPS_RIGHT_ACTION_WRITE. Having the

right FWPS_RIGHT_ACTION_WRITE allows the callout driver to write the actionType member of

this structure, and changing as intended. If there was not this right here, it could write to

actionType if it needed to block a previous FWP_ACTION_PERMIT decision took by a filter with

higher weight (remember: weight presents the same idea of altitude in mini-filter drivers).

▪ I added the enum MACRO_FWPS to be able to apply

FWPS_CLASSIFY_FLAG_REAUTHORIZE_IF_MODIFIED_BY_OTHERS. The information provided by

FwpsApplyModifiedLayerData0 on MSDN about its prototype was essential to do it

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-

fwpsapplymodifiedlayerdata0).

▪ The prototype of FwpsAcquireWritableLayerDataPointer0 (https://learn.microsoft.com/en-

us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0)

provided another useful hint. When describing writableLayerData, which is an output argument,

the description says that it a void pointer to be cast later to the appropriate structure type.

However, under the Remarks section, the MSDN tells us that it could be only two possible

structures: FWPS_BIND_REQUEST0 and FWPS_CONNECT_REQUEST0. Examining them, so it

became clear that the code is referring to the second one because “defines modifiable data for

the FWPM_LAYER_ALE_AUTH_CONNECT_REDIRECT_V4 and FWPM_LAYER_ALE_AUTH_CONNEC

T_REDIRECT_V6 layers.” (check: https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0). The same applies to

writableLayerData_1 because they are the same.

▪ The _FWPS_CONNECT_REQUEST0 structure has few interesting fields, but the first two of them are

more attractive at this time. As they are of SOCKADDR_STORAGE type, I changed their types (Y

hotkey) to sockaddr_in based on my previous experience. Once fields become clearer, I just

renamed other fields of arg_1 according to the context.

▪ I added at least one enumeration starting with ‘AF_’, ‘SOCK_’ and ‘IPPROTO’ (remember: adding

one enumeration value forces the IDA Pro to insert the whole enumeration associated) by going to

Enum tab, pressing INS key and choosing Add standard enum by symbol name. Afterwards, I used

these values to apply the missing macros.

▪ Other variables also have been renamed (N hotkey) according to the context.

Certainly, it could seem difficult to get an improvement of the prior code, but once readers can understand

my explanations above then the process becomes easier than expected. So far, our analysis’ paths have

been the following:

▪ sub_14000395C → sub_140005284 → sub_140004F2C → sub_1400053A0 → sub_140005524

▪ sub_14000395C → sub_140005284 → sub_140004FB8

Returning to sub_140005284 we have the remaining functions:

▪ FwpmTransactionCommit0: this function commits the opened transaction.

▪ FwpsCalloutUnregisterById0: this function unregisters a callout.

We can now return to sub_14000395C routine (figure 80), and try to draw conclusions and get further

details from other routines that we left behind. It is important to highlight that I am focusing only on a

small part of the code that is related to device object and Windows Filtering Platform (WFP) as an

opportunity to explain new concepts and not due to the malicious driver itself.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsapplymodifiedlayerdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsapplymodifiedlayerdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0

https://exploitreversing.com

92 | P a g e

The whole subroutine sub_14000395C is shown below:

[Figure 97] sub_14000395C routine

Moving inside sub_140002BBC → sub_1400031F8 routine, we find the following code:

[Figure 98] sub_1400031F8 routine

https://exploitreversing.com

93 | P a g e

The WSK_CLIENT_NPI structure is used when Network Programming Interface (NPI) is being

implemented. In a few words, NPI defines an interface between network modules, which implements a

function in the network stack, which can be attached and integrated one with other. Thus, the

WSK_CLIENT_NPI structure is described and defined as shown below:

[Figure 99] WSK_CLIENT_NPI structure

The ClientContext member is a pointer to the context of the WSK (Winsock Kernel) application’s binding

and the Dispatch member is a pointer to another structure named WSK_CLIENT_DISPATCH, which

provides a dispatch table for callback functions associated with events that are not related to a specific

socket, and that will be available to be called when necessary. Its composition is given by the following:

[Figure 100] WSK_CLIENT_DISPATCH structure

Its members are:

▪ Version: it indicates the version of WSK NPI.

▪ Reserved: it must be zero.

▪ WskClientEvent: a pointer to the WskClientEvent event callback function, which will notify the

WSK application about events not related to a specific socket.

The WskClientEvent callback function is defined as PFN_WSK_CLIENT_EVENT type as shown below:

[Figure 101] WskClientEvent callback definition

The ClientContext argument is a pointer to the context value coming from WskRegister routine;

EventType argument would be a specific event to notify the WSK application; Information argument that

is used to pass additional information to WSK application is most of times NULL; InformationLength

parameter provides the size of information. Therefore, returning to the sub_1400031F8 routine, we see

two routines being invoked: WskRegister() and WskCaptureProvideNPI().

https://exploitreversing.com

94 | P a g e

WskRegister routine registers a WSK application that is provided and implemented by WSK application

(WskClientNpi) and a pointer to a memory location identifying the registration instance of the WSK

Application (WskRegistration), which is actually initialized by WskRegister routine as the result from its

processing. Once the return is success then the WskCaptureProviderNPI routine, which is running at IRQL

<= DISPATCH LEVEL in this case because its second argument is 0xFFFFFFFF (WSK_INFINITE_WAIT), is

invoked and it captures a provider NPI when it becomes available. The first parameter (WskRegistration)

has been initialized by WskRegister routine and the third parameter contains a pointer to the WSK

provider dispatch table, which provides callbacks that the WSK application will be able to call.

Return to the sub_14000395C routine, it is time to quickly examine the sub_140004A10 routine, as shown

below:

[Figure 102] sub_140004A10 routine

Previously in this article, I commented about the CmRegisterCallbackEx() API, which is responsible for

registering a routine that will be used by kernel and filter drivers to monitor and, eventually, modify any

Registry operation such as renaming, enumeration, key deleting, key creation and so on. Now we have a

real example being used here and, as we also already learned, the first parameter is a callback function

(given by Function in this case), the second parameter is the altitude (320000, as readers can see on line

8), a pointer to the DRIVER_OBJECT structure and a Cookie reference, which is a pointer to

LARGE_INTEGER structure that receives a defined value that identifies the callback routine.

I will not show the content of the Function callback (provided as first argument to CmRegisterCallbackEx()

API), but the most interesting information there are two calls to CmCallbackGetKeyObjectID routine,

which retrieves an identifier and respective object name associated with the provided Registry key object.

Note that the second parameter of CmCallbackGetKeyObjectID routine is exactly a pointer that

RegistryCallback routine of the driver receives as being a reference to the REG_XXX_KEY_INFORMATION

structure.

Returning once again to sub_14000395C routine, there are two other routines that there is something

useful inside them. The first one is the sub_140006548 routine, which has only one function being called

that is PsCreateSystemThread(), which creates a system thread, as shown below:

https://exploitreversing.com

95 | P a g e

[Figure 103] sub_140006548 routine

The most important parameter here is StartRoutine (sixth parameter), which is a pointer to a routine

(KSTART_ROUTINE callback) to be executed. We can see that it is the second argument of this

sub_140006548 routine, and according to Figure 97 (line 33), it is the routine sub_140003A70, which is

shown below:

[Figure 104] sub_140003A70 routine

https://exploitreversing.com

96 | P a g e

The code starts calling KeEnterCriticalRegion routine on line 05, which disables the execution of normal

kernel APCs. This is a usual action when is expected that the threat performs an I/O operation. The kernel

APCs will only be re-enabled again when the code call KeLeaveCriticalRegion() on line 34.

On line 06, the KeSetBasePriorityThread routine is called to set the run-time priority of the current threat

by adding 5 to the base priority of the process holding the thread.

From this point at the code, the number of functions explodes, and there are too many to analyze in this

article, so I will offer only a few insights and readers can investigate by themselves if it is necessary.

The routine sub_140005678, which is called five times using different arguments, has as its main content

non-paged pool allocation using ExAllocatePoolWithTag routine (go to sub_140005678 →

sub_1400044FC). The tag used by ExAllocatePoolWithTag routine is “TLXE”. Of course, we already know

that this routine has been deprecated and replaced by ExAllocatePool2(), but malware’s authors continue

using it. Additionally, sub_140005678 routine receives a function’s pointer as first argument, and as

mentioned, it is provided one different function by each call.

The sub_1400069A4 routine (sub_140003BF0 → sub_140004A7C → sub_140004B5C → sub_1400069A4)

has interesting function’s invocations as shown below:

[Figure 105] sub_1400069A4 routine

https://exploitreversing.com

97 | P a g e

On line 11 the sub_140006B74 is called, which has the following code:

[Figure 106] sub_140006B74 routine

In the code from sub_140006B74 routine, the sub_140006B2C routine is invoked on line 13:

[Figure 107] sub_140006B2C routine

https://exploitreversing.com

98 | P a g e

We should do an analysis in reverse order to get an overview of the code. The sub_140006B2C routine

(Figure 107) is being called with ProcessID == 4 (check line 9 in sub_140006B74 routine), which know that

is the System process. Inside sub_140006B2C routine, these processes are searched by

PsLookProcessByProcessId function, and a handle to the EPROCESS structure of the provided process is

returned. Using this handle, the PsGetProcessImageFileName function is called, and a pointer to the image

file (executable file) backing up the process in the disk is returned. Finally, the ObDereferenceObject

function is called to decrease the reference count to the EPROCESS structure and, at end of the routine,

the same pointer to the image file is returned to sub_140006B74 routine.

Returning to sub_140006B74 routine, there is a while(true) condition parsing each process until a

provided PID limit (0x10000) and searching for the first occurrence of the string “explorer.exe”. Once it is

found, it returned through by invoking PsLookProcessByProcessId function the pointer to its respective

EPROCESS structure.

Now going up to sub_1400069A4 routine (Figure 105), which is the caller of sub_140006B74 routine, we

know that ObOpenObjectByPointer function opens an object referenced by the returned pointer from

sub_140006B74 routine and returns a pointer to the object. In other words, it is returning a pointer to the

process represented by the EPROCESS structure that, in this case, it is the explorer.exe. Pay attention to

line 20, which confirms our interpretation that it is a pointer to a process because the fifth parameter

(ObjectType) is exactly PsProcessType, and the AccessMode given by the sixth parameter is KernelMode

(zero).

Having this process’s handle, it is opened by ZwOpenProcessTokenEx function, which returns the

respective TokenHandle into its fifth parameter. On the next line ExAllocatePoolWithTag is called to

allocating a PagedPool (so its content can be paged out) with the tag “WENE” and size 0x1000 bytes, and

the validity of this allocated pool is checked by invoking MmIsAddressValid function (although Microsoft

doesn’t recommend using this function).

On line 41, the NtQueryInformationToken is invoked to retrieve information about the provided access

token (first parameter: TokenHandle), with second parameter equal to TokenUser which is a

TOKEN_INFORMATION_CLASS value that determines that the allocated buffer receives a TOKEN_USER

structure with the user account of the token , the third parameter is a pointer to the allocated paged pool,

the fourth parameter indicating the size of the TokenInformationBuffer (0x1000) and finally the last

parameter (ReturnLength) as being the length of the returned information.

At the end, the SID_AND_ATTRIBUTES structure, which is the only member of TOKEN_USER structure and

represents the user related to the access token, is used as argument of RtlConvertSidToUnicodeString

function (line 53) to convert it to a Unicode string representation of the SID. In other words, we have the

SID of the account associated with the explorer.exe process, which is returned within a UNICODE_STRING

structure:

[Figure 108] _UNICODE_STRING structure

https://exploitreversing.com

99 | P a g e

Returning to sub_140004CB8 routine (sub_140003BF0 → sub_140003BF0 → sub_140004CB8), there is a

call the sub_140006684 routine, which basically handles ACL, ACEs and ownership related to SIDs.

The sub_140006C90 routine (sub_140003BF0 → sub_140004A7C → sub_140006C90) is quite similar to

sub_140005678, using ExAllocatePoolWithTag function, but it allocates Paged Pool instead of NonPaged

Pool, and the tag is different: “WENE”. In this same routine, there are other Registry key manipulations

involving OBJECT_ATTRIBUTES structure.

Readers can easily realize that the following routines handle with Registry key configuration related to

Internet access (proxy) and also SID/ACL manipulation (in these specific cases, it happens in subroutines

inside the following ones):

▪ sub_140004B5C: (sub_140003BF0 → sub_140004A7C → sub_140004B5C)

▪ sub_140004E30: (sub_140003BF0 → sub_140004E30)

▪ sub_140004CB8: (sub_140003BF0 → sub_140004CB8)

Few Registry entries being manipulated:

▪ \\Registry\\User\\

▪ \\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections

▪ EnableLegacyAutoProxyFeatures

▪ AutoConfigURL

▪ DefaultConnectionSettings

Surprisingly, we just finished reviewing one (sub_140003BF0) of five routines referred to sub_140005678

routine (Figure 104), inside sub_140003A70 routine. The next two routines, sub_140003C10 and

sub_140003B90, are simpler and similar to the sub_140003BF0, and allocate memory pool, manipulate

strings and Registry keys.

The other two routines (sub_140003B80 and sub_140003BD0) are more interesting, but they call multiple

other subroutines, and it would become our analysis an endless procedure. Of course, readers could get

interested in analyzing them because there is the presence of routines interacting with

IO_STACK_LOCATION and Completion Routines, for example.

We cannot ignore the clear proxy reference on line 19 (Figure 104), suggesting a network redirection via

proxy configuration: http://110.42.4.180:2080/u. Furthermore, readers might get interested in a

Certificate Store handling inside the sub_140005D5C routine

(“\\Registry\\Machine\\SOFTWARE\\Microsoft\\SystemCertificates\\ROOT\\Certificates\\”). Finally, if

we returned a level upper of sub_14000395C (Figure 97), we are going finding multiple routines undoing

and freeing everything: releasing pools, unregistering callbacks (CmUnRegisterCallback routine),

releasing WSK application’s registration instance, releasing Network Programming Interface (NPI),

removing filter object, removing callout and, at end, closing the session to the filter engine.

Anyway, I already had said that would be only a fast overview about few pieces of code of this malicious

binary, but after having analyzed those few routines, the malicious drivers apparently try to open a kind

of exception in the filtering rule and redirecting the network data to a determined remote address and

IP port. Actually, its global plan is to manage to accomplish this task in kernel and user mode sides.

Certainly, readers can continue examining other routines by themselves.

https://exploitreversing.com

100 | P a g e

9. Further details about driver reversing

Analyzing drivers demands a good effort because they can contain multiple routines and, as expected, it

demands time. No doubts, when analyzing a system driver on Windows we have the offered public symbol

by Microsoft and the function’s names are already provided. The goal here is not analyze a driver, but only

interact with the first routines to show that everything we learned so far in this article is present and

readers can move forward by themselves without any serious issues.

I picked up the srv2.sys driver, which is the Smb2.0 Server driver (a network driver), which has been

updated very often in the last months, and a few of them due to security issues. Opening it on IDA Pro and

making a complete decompilation (File → Produce File → Create C File), the routine shown as entry point

will be GsDriverEntry, which is automatically generated when the driver was compiled and initialize the

security cookie, calls the DriverEntry at its end:

[Figure 109] srv2.sys: GsDriverEntry()

Going inside DriverEntry(), we have the following:

https://exploitreversing.com

101 | P a g e

[Figure 110] srv2.sys: DriverEntry() (truncated)

There is nothing really new in the DriverEntry routine above, but considerations follow below:

▪ From lines 11 to 30, the driver handles with WPP (Windows software trace preprocessor) aspects

aiming to establish a tracing (a logging capability that is similar to Windows event logging services)

of the operation, which is really useful during debugging sessions and, additionally, it offers the

possibility to publish events to ETW (Event Tracing for Windows). We are not interested in this

part of the driver, so we can skip it.

▪ From line 31 onwards, variables have been renamed.

https://exploitreversing.com

102 | P a g e

▪ Macros (M hotkey) have been applied to IoCreateDevice routine and also to major functions from

lines 65 to 69.

▪ A device object (network device) has been created by IoCreateDevice routine, and its name is

\Device\Srv2.

▪ The IoGetCurrentProcess function is called, and it returns a pointer to the current process.

▪ The DriverObject’s dispatch table contains pointers to four dispatch routines: cleanup

(Srv2Cleanup), close (Srv2Close), create (Srv2Create) and device control (Srv2DeviceControl).

▪ As usual and recommended, there is a DriverUnload routine to unload the driver.

We could examine the drivers and, as usual, the DispatchDeviceControl dispatch routine

(Srv2DeviceControl) is always a good starting point. I will not do it here because it is not the purpose of the

article analyze any kernel or filesystem driver in particular, but helping readers to learn about them and

respective techniques involved in the procedure.

Unfortunately, when reversing drivers that we do not have their symbols in hands, the task is harder and,

as a consequence, it might take an extended time to be finished. Readers can pick up any non-Microsoft

driver from their system during this example exercise. There are multiple applications to list drivers and

respective details from a running system, and readers could use applications such as driverquery (from

Windows: https://learn.microsoft.com/en-us/windows-server/administration/windows-

commands/driverquery) and DriverView (from Nirsoft: https://www.nirsoft.net/utils/driverview.html) that

are very simple. In my case I picked up the veracrypt.sys driver just to show the meaningful difference

between both examples (with and without debugging symbols):

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/driverquery
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/driverquery
https://www.nirsoft.net/utils/driverview.html

https://exploitreversing.com

103 | P a g e

https://exploitreversing.com

104 | P a g e

[Figure 112] veracrypt.sys: DriverEntry()

As readers already noticed, it will need to interpret the code and apply macros to improve it a bit, but it

was already expected. Anyway, everything we have learned in the previous section will be useful to get a

better understanding of the code.

https://exploitreversing.com

105 | P a g e

To avoid extending this article, I will be using an IDA Pro plugin named DriverBuddyReloaded

(https://github.com/VoidSec/DriverBuddyReloaded) to decode the IOCTL:

https://github.com/VoidSec/DriverBuddyReloaded

https://exploitreversing.com

106 | P a g e

https://exploitreversing.com

107 | P a g e

https://exploitreversing.com

108 | P a g e

[Figure 113] veracrypt.sys: improved DriverEntry()

The output from DriverBuddyReloaded shows the decoding of every IOCTL found over the code:

[Figure 114] DriverBuddyReloaded’s output

Pay attention to hotkeys such as CTRL+ALT+F to decode all IOCTLs within a function; CTRL+ALT+A to start

auto-analysis and CTRL+ALT+D to decode a single IOCTL code. They can help you a lot.

I have done a quick marking up on the first routine (DriverEntry), created a structure (line 93), applied

macros (M hotkey) and created an enumeration containing all IOCTL names and their respective values.

At this point, all function invocations could be normally analyzed because that is legit driver, non-malicious,

and it follows and uses the same concepts I’ve shown over this article. Nonetheless, it would not be very

productive and would only make the article bigger.

I tried to provide the necessary basic foundation to the kernel drivers, minifilter drivers and WFP

(Windows Filtering Platform), without delving into too many programming details. It will be useful for

readers in my next articles.

https://exploitreversing.com

109 | P a g e

10. Recommended Blogs and Websites

There are excellent cyber security researchers and companies keeping blogs and writing really good articles

about operating system internals, reverse engineering, vulnerability research and exploit development. A

list of interesting websites and respective Twitter handles, in alphabetical order, follows below:

▪ https://hasherezade.github.io/articles.html (by Aleksandra Doniec: @hasherezade)

▪ https://malwareunicorn.org/#/workshops (by Amanda Rousseau: @malwareunicorn)

▪ https://captmeelo.com/ (by Capt. Meelo: @CaptMeelo)

▪ https://csandker.io/ (by Carsten Sandker: @0xcsandker)

▪ https://chuongdong.com/ (by Chuong Dong: @cPeterr)

▪ https://doar-e.github.io/ (Diary of a reverse-engineer)

▪ https://elis531989.medium.com/ (by Eli Salem: @elisalem9)

▪ http://0xeb.net/ (by Elias Bachaalany: @0xeb)

▪ https://googleprojectzero.blogspot.com/ (Google Project Zero)

▪ https://www.hexacorn.com/index.html (@Hexacorn)

▪ https://hex-rays.com/blog/ (by Hex-Rays: @HexRaysSA)

▪ https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering (by Jiří Vinopal:

@vinopaljiri)

▪ https://kienmanowar.wordpress.com/ (by Kien Tran Trung: @kienbigmummy)

▪ https://www.inversecos.com/ (by Lina Lau: @inversecos)

▪ https://maldroid.github.io/ (Łukasz Siewierski: @maldr0id)

▪ https://github.com/mnrkbys (by Minoru Kobayashi: @unkn0wnbit)

▪ https://voidsec.com/member/voidsec/ (by Paolo Stagno: @Void_Sec)

▪ https://www.youtube.com/@OffByOneSecurity (by Stephen Sims: @Steph3nSims)

▪ https://windows-internals.com/author/yarden/ (by Yarden Shafir @yarden_shafir)

11. Conclusion

This article, as I said at its beginning, is really an introduction to a complex topic that are kernel drivers and

minifilter drivers. The objective is to help professionals to get a minimal knowledge about involved

concepts and provide the necessary foundation for the next articles.

Nowadays I have been working in a different area today (reversing + exploit development), but I always like

to remember closer researchers that each person has a unique perspective of the information security’s

world, and none of them are wrong. Follow your heart. :)

Just in case you want to stay connected:

▪ Twitter: @ale_sp_brazil

▪ Blog: https://exploitreversing.com

Keep reversing and I see you at next time!

Alexandre Borges

https://hasherezade.github.io/articles.html
https://malwareunicorn.org/#/workshops
https://captmeelo.com/
https://csandker.io/
https://chuongdong.com/
https://doar-e.github.io/
https://elis531989.medium.com/
http://0xeb.net/
https://googleprojectzero.blogspot.com/
https://www.hexacorn.com/index.html
https://hex-rays.com/blog/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://kienmanowar.wordpress.com/
https://www.inversecos.com/
https://maldroid.github.io/
https://github.com/mnrkbys
https://voidsec.com/member/voidsec/
https://www.youtube.com/@OffByOneSecurity
https://windows-internals.com/author/yarden/
https://exploitreversing.com/

	0. Quote
	1. Introduction
	2. Acknowledgments
	3. References
	4. Kernel drivers review
	5. Filter drivers review
	6. Windows Driver Frameworks (WDF) review
	7. Supplemental information about callbacks
	8. Reversing and Windows Filtering Platform (WFP)
	9. Further details about driver reversing
	10. Recommended Blogs and Websites

