
https://exploitreversing.com

1 | P a g e

Exploiting Reversing (ER) series:
Article 02 | Windows kernel drivers – part 02

(a step-by-step vulnerability research series on Win, macOS, hypervisors and browsers)

by Alexandre Borges
release date: JAN/03/2024 | rev: A.1

0. Quote

“If you asked me, would I do it again, do I think it's worth it? Yeah, I think it’s worth it.”
(Jeffrey Wigand | “The Insider” movie - 1999)

1. Introduction

Welcome to the second article of Exploiting Reversing (ER) series, a step-by-step vulnerability research

series on Windows, macOS, hypervisors and browsers, where we will review concepts, architecture and

practical steps related to vulnerability research. My last articles are listed below:

▪ ERS_01: https://exploitreversing.files.wordpress.com/2024/05/exploit_reversing_01-1.pdf
▪ MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/

▪ MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/

▪ MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

▪ MAS_4: https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/

▪ MAS_5: https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/

▪ MAS_6: https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/

▪ MAS_7: https://exploitreversing.com/2023/01/05/malware-analysis-series-mas-article-7/

This is an introductory, step-by-step article. I chose as a starting point the patch diffing topic to introduce

new concepts and ideas, and our objective is to collect and understand facts related to an already existing

vulnerability and also to establish a line of comprehension about how the process of patch diffing and

respective analysis and reverse engineering works.

In summary, and as I mentioned in my previous article, we will be studying binaries and non-binaries, and

this investigation can be composed for the following phases over this text and next ones:

a. getting a better understanding through well-known approaches such as reverse engineering (static

or dynamic analysis), auditing (if it is the case) and, who knows, even fuzzing.

b. If it is necessary, explaining fundamental topics to provide a better context for the comprehension

of the binary and involved context.

c. applying well-known techniques to get additional information about the target file.

d. eventually, trying to understand the vulnerability and how to trigger it.

https://exploitreversing.files.wordpress.com/2024/05/exploit_reversing_01-1.pdf
https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/
https://exploitreversing.com/2023/01/05/malware-analysis-series-mas-article-7/

https://exploitreversing.com

2 | P a g e

Honestly, I would like to keep articles not so long, and try to focus on specific topics by articles, and due to

the nature of my real job, I cannot comment on anything about exploitation for now.

2. Acknowledgments

I could not write this series (Exploiting and Reversing Series) and the MAS (Malware Analysis Series)

without receiving the decisive help from Ilfak Guilfanov (@ilfak), from Hex-Rays SA (@HexRaysSA),

because I didn’t have an own IDA Pro license, and he kindly provided everything I needed to write this

series about reversing and vulnerabilities, and other one that are coming. However, his help did not stop in

2021, and he and Hex-Rays have continuously helped until the present moment by providing immediate

support for everything I need to keep these public projects. Additionally, Ilfak is always truly kind replying

to me every single time that I send a message to him. This section, about acknowledgments, can be

translated to one word: gratitude. Personally, all messages from Ilfak and Hex-Rays expressing their trust

and praises on my previous articles are one of most motivation to keep writing as well readers who send

me even a single message thanking me. Once again: thank you for everything, Ilfak.

I have chosen a quote to start each article to subtly show my thinking about life and information security in

general, sometimes mirroring the present days and all challenges that have forced me to make a deep

reflection over. At the end of day, we should invest in the work that we really love doing, no matter our

age, because life is short, and the ahead day is our future. Enjoy the journey!

3. Environment Setup

This article demands a lab setup using the following environment:

▪ Two virtual machines with Windows 11. You can download a virtual machine for VMware, Hyper-

V, VirtualBox or Parallels from Microsoft on: https://developer.microsoft.com/en-

us/windows/downloads/virtual-machines/. If you already have a valid license for Windows 11, so

you can download the ISO file from: https://www.microsoft.com/software-download/windows11

▪ IDA Pro or IDA Home version (@HexRaysSA): https://hex-rays.com/ida-pro/ . Of course, readers

might use other reverse engineering tools, but I will be using IDA Pro and its decompiler in this

article.

▪ As plugins for IDA Pro, install two products to analyzing binary patches:

o BinDiff: https://github.com/google/bindiff/releases/tag/v8

o Diaphora: https://github.com/joxeankoret/diaphora

▪ Personally, my recommendation is that you install Windows SDK + Visual Studio + Windows

Development Kit (WDK) in both virtual machines (actually, I also have the same configuration in my

host machine):

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://www.microsoft.com/software-download/windows11
https://hex-rays.com/ida-pro/
https://github.com/google/bindiff/releases/tag/v8
https://github.com/joxeankoret/diaphora

https://exploitreversing.com

3 | P a g e

▪ Visual Studio: https://visualstudio.microsoft.com/downloads/

▪ Windows SDK: https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/

▪ Windows Development Kit (WDK): https://learn.microsoft.com/en-us/windows-

hardware/drivers/download-the-wdk

▪ For investigating Windows Internals’ details or kernel drivers, it is necessary to debug them to be
able to understand the flow of information and involved context. Assumes that we have two virtual
machines, or one virtual machine is the host and the other one is the target, and execute:

On target:

▪ bcdedit /set {default} DEBUG YES

▪ bcdedit /dbgsettings net hostip:<host ip> port:50100 key:1.2.3.4

▪ bcdedit /dbgsettings

▪ shutdown /r /t 0

On host:

▪ windbg -k net:port=50100,key=1.2.3.4

▪ Make sure that symbols are configured:

o File → Symbol File Path:

srv*c:\symbols*https://msdl.microsoft.com/download/symbols

o set

_NT_SYMBOL_PATH=srv*c:\symbols*https://msdl.microsoft.com/download/symbols

(personally, I prefer setting it at Advanced Windows Setting → Environment

Variables and creating the _NT_SYMBOL_PATH as explained above)

▪ Debug → Break

4. References

There is a brief list of references about this SMB vulnerability and even other ones, which are always useful

for getting further information and understanding different point of views:

▪ https://blog.zecops.com/research/smbleedingghost-writeup-chaining-smbleed-cve-2020-1206-

with-smbghost/
▪ https://www.coresecurity.com/core-labs/articles/ms15-083-microsoft-windows-smb-memory-

corruption-vulnerability

▪ https://threatprotect.qualys.com/2020/06/10/microsoft-windows-smbv3-smbleed-vulnerability-

cve-2020-1206/

5. Gathering initial information

We will be starting the analysis the CVE-2022-35804, which is described as “SMB Client and Server Remote

Code Execution Vulnerability“ and, Microsoft provides a short list of facts about it:

https://visualstudio.microsoft.com/downloads/
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://blog.zecops.com/research/smbleedingghost-writeup-chaining-smbleed-cve-2020-1206-with-smbghost/
https://blog.zecops.com/research/smbleedingghost-writeup-chaining-smbleed-cve-2020-1206-with-smbghost/
https://www.coresecurity.com/core-labs/articles/ms15-083-microsoft-windows-smb-memory-corruption-vulnerability
https://www.coresecurity.com/core-labs/articles/ms15-083-microsoft-windows-smb-memory-corruption-vulnerability
https://threatprotect.qualys.com/2020/06/10/microsoft-windows-smbv3-smbleed-vulnerability-cve-2020-1206/
https://threatprotect.qualys.com/2020/06/10/microsoft-windows-smbv3-smbleed-vulnerability-cve-2020-1206/

https://exploitreversing.com

4 | P a g e

▪ CVE: 2022-35804

▪ Description: SMB Client and Server Remote Code Execution Vulnerability

▪ CVSS: 3.1 8.8 / 7.7

▪ Date Release: Aug 9, 2022

▪ Exploitability: Exploitation More Likely

▪ Workaround: Install updates or disable compression:

▪ (unauthenticated attackers) Set-ItemProperty -Path

"HKLM:\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\Parameters"

DisableCompression -Type DWORD -Value 1 -Force

▪ (authenticated attackers) Set-ItemProperty -Path

"HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters" DisableCompression -

Type DWORD -Value 1 -Force

Links related to this vulnerability follows:

▪ Microsoft: https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-35804

▪ Mitre: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-35804

▪ Rapid7: https://www.rapid7.com/db/vulnerabilities/msft-cve-2022-35804/

As exposed above, we have a series of clues about what we should look for and the time range. The next

key point is to find what are the affected executables, DLLs, or drivers, and perform a binary diffing on it.

However, one of the key problems here is really learning what we are looking for (executable, DLL or even

a driver) because the notification from Microsoft does not tell us anything about the involved binary or

binaries.

Thus, before proceeding and searching for anything vaguely related to SMB inside the patches, I did a short

investigation about Microsoft SMB and collected support documentation:

▪ SMB Management API: https://learn.microsoft.com/en-us/previous-

versions/windows/desktop/smb/smb-management-api-portal

▪ MS-SMB: Server Message Block (SMB) Protocol: https://learn.microsoft.com/en-

us/openspecs/windows_protocols/ms-smb/f210069c-7086-4dc2-885e-861d837df688

▪ Overview of file sharing using the SMB 3 protocol in Windows Server:

https://learn.microsoft.com/en-us/windows-server/storage/file-server/file-server-smb-overview

SMB is organized in client and server components like other services, and its SMB client side is composed

by binaries that are hold under %windir%\system32\Drivers folder, such as:

▪ mrxsmb.sys

▪ mrxsmb10.sys

▪ mrxsmb20.sys

▪ mup.sys

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-35804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-35804
https://www.rapid7.com/db/vulnerabilities/msft-cve-2022-35804/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/smb/smb-management-api-portal
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/smb/smb-management-api-portal
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/f210069c-7086-4dc2-885e-861d837df688
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/f210069c-7086-4dc2-885e-861d837df688
https://learn.microsoft.com/en-us/windows-server/storage/file-server/file-server-smb-overview

https://exploitreversing.com

5 | P a g e

▪ rdbss.sys

▪ smbdirect.sys

On the other side, the SMB Server is composed by binaries that make part of %windir%\system32\Drivers

folder, such as:

▪ srvnet.sys

▪ srv.sys

▪ srv2.sys

▪ smbdirect.sys

▪ srvsvc.dll (under %windir%\system32)

No doubt, SMB is a complex application (or session) level protocol, and issues could come up from the

protocol itself and by its integration with TPC/IP. Of course, we are not discussing on the previous SMB v.1

implementation, which should be disabled in any system due its multiple security problems.

Additionally, SMB v3 works with AES-256, which provides us with a more secure encrypting scheme when

moving any file over a network, and not to mention its support to S2D (Storage Spaced Direct), QUIC and

other protocols and services.

From these references above and after googling about it, there are other files that potentially we can

examine for recent changes, and which might be included within any of the released patches by Microsoft:

▪ srvsvc.dll: file system driver.

▪ srv.sys, srv2.sys and srvnet.sys: drivers associated with SMB server.

▪ srvcli.dll: associated with the SMB client to make communication to the SMB server.

▪ mrxsmb.sys, mrxsmb10.sys and mrxsmb20.sys: drivers related to network redirectors drivers.

Not so surprisingly, some of these files were constantly updated in my host until the end of 2022 (I checked

in C:\Windows\System32 and C:\Windows\System32\drivers directories). As the date of the patch CVE

was Aug 09, 2022, and the patch had already been released, so a good first shot is trying to search for

something at that date.

On Windows, the CIFS (Common Internet File System) is accountable for determining the network

transport protocol used over the communication, and it is related to SMB (Server Message Block)

protocol. Additionally, the SMB Server, which is the LAN Manager Server, is responsible for providing file

server service.

6. Investigating patches

Readers should always collect every single piece of information related to the target, including references

to public exploits and good write-ups, so a concise list of suggested websites follow below:

▪ https://www.cvedetails.com/vulnerability-list/

▪ https://msrc.microsoft.com/update-guide/

▪ https://cvexploits.io/

▪ https://www.zerodayinitiative.com/blog

https://www.cvedetails.com/vulnerability-list/
https://msrc.microsoft.com/update-guide/
https://cvexploits.io/
https://www.zerodayinitiative.com/blog

https://exploitreversing.com

6 | P a g e

▪ https://www.catalog.update.microsoft.com/Home.aspx

At the bottom of the Microsoft’s page that reports the vulnerability (https://msrc.microsoft.com/update-

guide/vulnerability/CVE-2022-35804), there is a link to download associated patches from Microsoft

Update Catalog (https://catalog.update.microsoft.com/Search.aspx?q=KB5016629).

[Figure 01] Content of the extracted MSU file

I have downloaded the “Cumulative Updated for Windows 11 for x64-based Systems (KB5016629)”,

which is a Microsoft Standalone Update (.msu) and, according to this KB (Knowledge Base), it replaces the

following patches (truncated list):

▪ 2021-10 Cumulative Update for Windows 11 for x64-based Systems (KB5006674)

▪ 2022-07 Cumulative Update for Windows 11 for x64-based Systems (KB5015814)

▪ 2021-11 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5007262)

▪ 2021-10 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5006746)

▪ 2021-11 Cumulative Update for Windows 11 for x64-based Systems (KB5007215)

▪ 2022-04 Cumulative Update for Windows 11 for x64-based Systems (KB5012592)

▪ 2022-02 Cumulative Update for Windows 11 for x64-based Systems (KB5010386)

▪ 2022-03 Cumulative Update for Windows 11 for x64-based Systems (KB5011493)

▪ 2022-03 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5011563)

▪ 2022-02 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5010414)

▪ 2022-07 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5015882)

▪ 2021-12 Cumulative Update for Windows 11 for x64-based Systems (KB5008215)

▪ 2022-05 Cumulative Update for Windows 11 for x64-based Systems (KB5013943)

▪ 2022-06 Cumulative Update Preview for Windows 11 for x64-based Systems (KB5014668)

▪ 2022-06 Cumulative Update for Windows 11 for x64-based Systems (KB5014697)

Of course, at the time I am drafting this article, other quite a lengthy list of patches has already replaced

this own KB5016629, but it does not matter because this article aims to explain to you the mechanism and

approaches.

A .msu file usually contains a few .cab (Cabinet) files, and these .cab files contain files that participate in

the patching process. Therefore, we must extract files from inside of the .msu file and this task can be

performed by executing the following steps that provide a structured hierarch of directories (folders):

https://www.catalog.update.microsoft.com/Home.aspx
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-35804
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-35804
https://catalog.update.microsoft.com/Search.aspx?q=KB5016629

https://exploitreversing.com

7 | P a g e

▪ mkdir PATCHES_MS

▪ cd PATCHES_MS

▪ mkdir 2022_08

▪ cd 2022_08

▪ mkdir patch

▪ mkdir all

▪ expand.exe -F:* “windows10.0-kb5016629-

x64_5c835cd538774e6191bb98343231c095c7918a72.msu” .\all\

So far, it is everything OK, and we have the following content in the PATCHES_MS folder:

[Figure 02] Content of the extracted MSU file

As I had mentioned previously, readers need to pay attention that there are several .cab files, but one of

files has .psf extension, which means it is a Patch Storage File (PSF).

This PSF file in the output above is exactly the biggest one and, excepting its extension, there is another file

exactly with the same name (Windows10-0-KB5016629-x64). In previous versions of Windows, Microsoft

used only .cab files for patching and, as readers will see, its extraction is easy (not necessarily fast).

However, this scenario brings a key point to readers: from time to time, Microsoft changes the patch

structure and respective organization, and it is always recommended to read all released documents.

For the Windows 11, the current patch scheme used by Microsoft is a pair of files with the same name,

although different extensions (.cab and .psf), which also demands a different method to extract the

necessary information. For example, to this example, we have the following:

▪ Windows10.0-KB5016629-x64.cab: in general, this .cab file contains only metadata. After

extracting it, we will find substantial list of files with extensions like .cat (security catalog), .mum

(hold metadata about the referred package) and .manifest (manifests).

▪ Windows10.0-KB5016629-x64.psf: this is the file that we are interested in because it can contain

full patch files and delta patches, and the latter is composed of forward differential (f) and reverse

differential (r) files. Of course, it is always much better to have full patch files, but even in case

where we do not have it, the differential files can provide us with useful information.

If we were only unpacking a .cab file from the previous patch scheme used by Windows, we would find a

list of full patch files, differential files, and metadata files, and all of them within the .cab file. In the current

patch scheme used by Windows 11, we will find only metadata files in the provided .cab file.

https://exploitreversing.com

8 | P a g e

We can manually extract/deflate the provided .cab file (Windows10.0-KB5016629-x64.cab) that is inside:

▪ expand.exe -F:* ".\all\Windows10.0-KB5016629-x64.cab" .\patches\

Extracting patches takes time, so be patient while the command is not finished. After having finished, the

command extracted 42924 files!

Afterwards, create the following folders within the patches directory: catalogs, manifests, and mums.

Finally, move files according to their respective extensions.

The simple sequence of commands to perform the described operation follow below:

▪ cd patches

▪ mkdir catalogs

▪ mkdir manifests

▪ mkdir mums

▪ mv *.cat catalogs\

▪ mv *.manifest manifests\

▪ mv *.mum mums\

Readers will have all files inside their respective folders, but they contain only metadata.

To perform the same task, we have the opportunity to use a scripted named PatchExtract.ps1

(https://gist.githubusercontent.com/wumb0/306f97dc8376c6f53b9f9865f60b4fb5/raw/c93a0c3162b8c42

89c96bf23b334d37f7e420150/PatchExtract.ps1), which does the same job of extracting and sorting all files

in their respective directories that are created by the script. As an important note, PatchExtract.ps1 was

authored by Greg Linares (@Laughing_Mantis).

Running PatchExtract.ps1 against the Windows10.0-KB5016629-x64.cab file is accomplished by executing

the following command on PowerShell prompt:

▪ .\PatchExtract.ps1 .\Windows10.0-KB5016629-x64.cab .\auto\

The scripts will offer itself to create the directory (auto), so type “Y”. Once again, the entire procedure

takes time and as unpacked patches are usually big, it is suggested to reserve a reasonable space of the file

system. After it finishes, we will find the following structure:

[Figure 03] Content of the extracted MSU fil using PatchExtract.ps1.

The output above is clear, and PatchExtract.ps1 script sorts all files in their appropriate directory, which

provides us with a good indication about where to look for what we need.

https://gist.githubusercontent.com/wumb0/306f97dc8376c6f53b9f9865f60b4fb5/raw/c93a0c3162b8c4289c96bf23b334d37f7e420150/PatchExtract.ps1
https://gist.githubusercontent.com/wumb0/306f97dc8376c6f53b9f9865f60b4fb5/raw/c93a0c3162b8c4289c96bf23b334d37f7e420150/PatchExtract.ps1

https://exploitreversing.com

9 | P a g e

Returning to our scenario, we also have the .psf file, but PatchExtract.ps1 script is not able to open and

extract it, unfortunately. To handle this situation, we will use another very interesting script named

PSFExtractor, which can be found and downloaded (both x86 and x64 versions) from

https://github.com/Secant1006/PSFExtractor or even

https://github.com/Secant1006/PSFExtractor/releases/tag/v3.07.

To use this script, we must put both .cab and .psf file in the same directory and ensure that both files have

the same name, excepting its extension. To make the procedure simple, I copied the extracted file into the

same “all” folder and executed the following command on PowerShell:

▪ .\PSFExtractor.exe .\Windows10.0-KB5016629-x64.cab

The script has worked very well, as expected, but it does not sort files and folders to an appropriate

directory. Thus, we must do it manually as shown below (by the way, from this point onward I will be using

commands from Cygwin on Windows if it necessary: https://www.cygwin.com/):

▪ mkdir manifests

▪ mv *.manifest manifests/

▪ mkdir mums

▪ mv *.mum mums/

▪ mkdir catalogs

▪ mv *.cat catalogs

▪ mkdir x64

▪ mv amd64_* x64/

▪ mkdir msilfolder

▪ mv msil_* msilfolder/

▪ mkdir wow64folder

▪ mv wow64* wow64folder

▪ mkdir x86folder

▪ mv x86_* x86folder

Certainly, we could write a simple script to accomplish this time-consuming task, but I have been trying to

show a step-by-step procedure about how this can be done. At end, readers will have something like:

[Figure 04] Sorting files to different folders

Once we have done it, change to the x64 directory and list anything related to SMB, but exclude eventual

resources, and we will have:

https://github.com/Secant1006/PSFExtractor
https://github.com/Secant1006/PSFExtractor/releases/tag/v3.07
https://www.cygwin.com/

https://exploitreversing.com

10 | P a g e

[Figure 05] Listing SMB related directories

We confirmed that reported issues related to SMB server. If readers inspect these folders, they will find

only forward differentials (inside f folders). However, examining inside them, a series of differential files

with extensions such as .dll, .sys and other ones, will come up:

[Figure 06] Searching for files potentially involved.

That is great! We made a small progress and found the following files:

▪ mrxsmb10.sys: network kernel-mode driver, as well known as Microsoft Server Message Block

redirector, which is responsible for providing network redirector functions. Number 10 is a

reference to SMB version 1.0.

▪ mrxsmb20.sys: network kernel-mode driver, also known as Microsoft Server Message Block

redirector, which is responsible for providing network redirector functions. Number 20 also is a

reference to SMB version 2.0.

▪ mrxsmb.sys: network kernel-mode driver, as well known as Microsoft Server Message Block

redirector, which is responsible for providing network redirector functions. Eventually, it is related

to the current version of SMB (version 3.0).

▪ smbhelperclass.dll: as the name indicates, it is an auxiliary SMB file.

▪ smbwmiv2.dll: this DLL, as well known as WMIv2 Provider for SMB File Server/Client, is related to

SMB APIs.

▪ srvcli.dll: this DLL, which is known as Server Service Client DLL, and it is related to Net API.

▪ srv.sys: this driver is associated to SMB server version 1.

https://exploitreversing.com

11 | P a g e

▪ srv2.sys: this driver is associated to the SMB server version 2.

▪ This driver is associated with the SMB server and, according to description, it is a common

component.

▪ srvsvc.dll: this DLL is also related to SMB server.

▪ sscore.dll: this DLL, as known as System Restore Core Library, is related to SMB server.

Right now, I am not considering other types and formats of files such as ps1xml, psm1 and cdxml related

to PowerShell interaction with SMB Server, but they also exist within the patch:

[Figure 07] Searching for files potentially involved.

Proceeding with our analysis, we should remember that we do not have the binary itself, but only a set of

forward differential patches that must be applied on the last delivered file with the same name and as

expected, there is also scripts to automatize our task.

If readers want to get a better comprehension about differential patches, I suggest to read this document

written by Microsoft: https://learn.microsoft.com/en-us/windows/deployment/update/psfxwhitepaper.

We have the names of the drivers and DLLs being patched and related to the SMB server flaw, so the next

step is choosing a starting point, and we will be picking up srv2.sys that is a first potential candidate.

However, there will certainly be other files such as srv.sys and srvcli.dll might be chosen too.

At this point, the next step would be search for previous Microsoft Accumulative Patches until finding one

that have the full version of the same files being investigated, applying the differential patch, and getting

the updated version, and finally diffing them. Nonetheless, there is a better and reliable way to get the

same result, which is much handier and saves us from a time-consuming and error-prone task.

We will be using a fantastic service named Winbindex (https://winbindex.m417z.com/), which provides us

with the last versions of Windows binaries and associated information to each file. Thus, searching for

srv2.sys on Winbindex, we receive the following results:

https://learn.microsoft.com/en-us/windows/deployment/update/psfxwhitepaper
https://winbindex.m417z.com/

https://exploitreversing.com

12 | P a g e

[Figure 08] Searching for srv2.sys on Winbindex.

There is a considerable list of versions of the file (srv2.sys) being searched for and, initially, it could be

difficult finding the correct one, but the filter mechanisms help us a lot and we already have existing

information to refine our search as the KB (KB5016629) and Date Release (Aug 9, 2022).

[Figure 09] Searching for srv2.sys on Winbindex with filters.

https://exploitreversing.com

13 | P a g e

Curiously, there is an extensive list of updates to these drivers after Aug 09, 2022 (at the time I am drafting

this article, there are six new versions, at least), which we can investigate in a future article.

Even most important for us, there is a previous version of this file, which KB is KB5015882 and was

released on July 21, 2022. Actually, this driver has suffered multiple updates throughout the year, and we

cannot determine precisely when the vulnerability has been introduced without performing a digression.

To demonstrate the next four versions of this driver and the previous one:

[Figure 10] Next four updated versions of this driver, and one released one month before our target.

Additional information about the driver released on August 09, 2022 (our target) follows:

▪ Name: srv2.sys

▪ SHA256: d767085d244cd6bf0ea4b9070b99f054dcfe8714c03e75c892c1ecd6c122df2e

▪ File version: 10.0.22000.832

▪ Date: AUG 09, 2022

▪ KB: KB5016629

▪ Win. Version: Windows 11 21H2

The driver can be easily downloaded by clicking on the Download button, and it is saved as .blob, so it is

enough to rename it to anything you want to. Examining a bit more, the previous version of the same

driver (srv2.sys), from July 12, 2022 (as shown in the Figure 10 above) has the following information:

▪ Name: srv2.sys

▪ Hash: 1eba7518043a96d20c6f66f5e138cbce6e5d1a592bf3426737327b63c2f87e96

▪ File Version: 10.0.22000.778

▪ Date: JULY 12, 2022

▪ KB: KB5015814

▪ Win. Version: Windows 11 21H2

We must download them to compare both driver’s version using BinDiff tool and Diaphora and,

eventually, to try to understand all fixes that have been applied to the driver. It is quite important to

highlight that we are starting with the srv2.sys driver because it is only an attempt to get some grasp of

the issue. At this point, we do not even know whether the flaw is present in this driver itself, but it is still a

good exercise.

https://exploitreversing.com

14 | P a g e

7. Binary Diffing using BinDiff tool

Binary diffing is an excellent approach to understanding fixes and vulnerabilities, and also finding new

vulnerabilities at the same fixed binary. As we already have two first candidates to diffing, it could be

interesting to look at the code and examine changes from one version to another. First, we will try to use

BinDiff (https://zynamics.com/software.html), which is an oustanding tool and plugin for IDA Pro. To use

BinDiff, execute:

▪ Open the first binary in IDA Pro (for example, srv2_sys_AUG_2022.blob, which is the name given to

identify the srv2.sys from AUG)

▪ Once IDA has finished analyzing the code, you can close the database.

▪ Open the second binary using IDA Pro (srv2_sys_JUL_2022.blob).

▪ Once the IDA Pro has analyzed the code, you can close the database.

▪ Open the first saved database in IDA Pro (from srv2_sys_AUG_2022.blob binary)

▪ Go to File → BinDiff and pick up the second saved database (from srv2_sys_JUL_2022.blob binary)

The first results from the comparison between databases can be found on Matched Functions, sort

functions by Similarity and we will get the following results:

[Figure 11] Binary Diffing of two different versions of srv2.sys

After having run BinDiff, readers will see few columns:

▪ Similarity: how similar two matches functions are.

▪ Confidence: indicates the confidence of the Similarity score.

▪ Change: this letter highlights differences between matched functions, such as:

▪ G (Graph): there is structural difference between changes in functions.

▪ I (Instruction): either number of instructions or one mnemonic (at least) has changed.

▪ J (Jump): indicates a branch inversion.

▪ E (Entrypoint): the basic blocks of the entry point have not been matched.

▪ L (Loop): the number of loops has changed.

▪ C (Call): one of the call targets has not been matched, at least.

▪ EA Primary: the effective address of the function in the current IDA database.

▪ Name Primary: the name of the function in the current IDA database.

▪ EA Secondary: the effective address of the function in the second loaded IDA database.

https://zynamics.com/software.html

https://exploitreversing.com

15 | P a g e

▪ Name Secondary: the name of the function in the second loaded IDA database.

There are other columns, but these ones are the most important right now. According to our results, we

have the following scenario:

▪ Smb2QueryFileNormalizedName: GI-JE-C

▪ Smb2ValidateWrite: GI----

These functions are our starting point to perform an investigation, but we should underscore that we are

only focused on srv2.sys and, eventually, we will need to expand the scope of our analysis later.

As readers can notice, both functions have few changes between versions, but there are a lengthy number

of cases that only a handful of instructions can represent a fix or, analyzed from the opposite angle, they

might be the cause of vulnerability.

For example, readers might remember about CVE-2020-1350, as known as SIGRed, which was a

vulnerability in the dns.exe file:

[Figure 12] Fix introduced by Microsoft to fix CVE-2020-1350 at past.

There is a series of blogs and articles commenting about this vulnerability, which was critical, “wormable”

and treated as a RCE (remote code execution) issue. If readers are interested in reading about such old and

important vulnerability, a brief list of websites might be useful:

▪ https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1350

▪ https://www.rapid7.com/blog/post/2020/07/14/windows-dns-server-remote-code-execution-

vulnerability-cve-2020-1350-what-you-need-to-know/

▪ https://support.microsoft.com/en-gb/topic/kb4569509-guidance-for-dns-server-vulnerability-cve-

2020-1350-6bdf3ae7-1961-2d25-7244-cce61b056569

Returning to our preliminary investigation, save the result of the comparison by going to Edit → Plugins →

BinDiff and choose Save Results. Afterwards, open BinDiff application (out of IDA Pro) and load the saved

results. The output will be something like:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1350
https://www.rapid7.com/blog/post/2020/07/14/windows-dns-server-remote-code-execution-vulnerability-cve-2020-1350-what-you-need-to-know/
https://www.rapid7.com/blog/post/2020/07/14/windows-dns-server-remote-code-execution-vulnerability-cve-2020-1350-what-you-need-to-know/
https://support.microsoft.com/en-gb/topic/kb4569509-guidance-for-dns-server-vulnerability-cve-2020-1350-6bdf3ae7-1961-2d25-7244-cce61b056569
https://support.microsoft.com/en-gb/topic/kb4569509-guidance-for-dns-server-vulnerability-cve-2020-1350-6bdf3ae7-1961-2d25-7244-cce61b056569

https://exploitreversing.com

16 | P a g e

[Figure 13] BinDiff application

Checking the graph related Smb2ValidateWrite routine from both binaries, we have:

[Figure 14] BinDiff: highlighting differences

There are important and interesting differences between two binaries on the Smb2ValidateWrite routine

and we will return to study them in next sections. Before proceeding, I would like to show Diaphora.

https://exploitreversing.com

17 | P a g e

8. Binary Diffing using Diaphora tool

Diaphora (https://github.com/joxeankoret/diaphora) is an great diffing tool supported by all recent

versions of IDA Pro (including the current version 8.3), and offers a series of useful features to analyze

binary diffing, and one of them is exactly the possibility to work on the IDA pseudo-code. According to its

GitHub, a small list of capabilities of Diaphora are:

▪ diffing assembler and pseudo-code-based heuristics.

▪ diffing pseudo-code and microcode support

▪ parallel diffing

▪ similarity ratio calculation

▪ batch automation

We can clone or download its last version (https://github.com/joxeankoret/diaphora/releases/tag/3.1.):

▪ git clone https://github.com/joxeankoret/diaphora

After cloning it, you have the following directory structure:

[Figure 15] Diaphora: directory organization

Differently from BinDiff, Diaphora must be launched and used through command line. Only to make the

procedure cleaner, I have copied both srv2.sys files and its respective .idb files (from IDA Pro) to a

separate folder (in my case, C:\Users\Administrador\Desktop\EXPLOITING_REVERSING\FILES\DIAPHORA)

and my initial structure is:

https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora/releases/tag/3.1

https://exploitreversing.com

18 | P a g e

[Figure 16] Separate folder containing binaries and respective IDA Pro databases (.idb files)

We have two .idb files: srv2_sys_AUG_2022.blob.i64, which is associated with srv2.sys file from AUG

2022, and the second one (srv2_sys_JUL_2022.blob.i64), which is associated with srv2.sys file from JUL

2022. Open the older one, go to File | Script File (ALT+F7) and open diaphora.py file, as shown below:

[Figure 17] Opening diaphora.py script in IDA Pro 8.3

https://exploitreversing.com

19 | P a g e

Right now, the following options matter for us:

▪ Export IDA database to SQLite: it indicates the folder where Diaphora will store IDA database

information as an exported file in SQLite. I kept the same folder of IDA Pro database.

▪ Use the decompiler if available: this option is one of notable features of Diaphora, and as readers

have the decompiler, certainly you want to use it.

▪ Use slow heuristics: this option produces better results, but it might be slow with large databases.

Click on the OK button and wait for Diaphora while it exports .idb information into an SQLite database. In

my case, it took over five minutes to finish the export activity. Close the current .idb file and save it.

Open the newer .idb file (srv2_sys_AUG_2022.blob.i64) and repeat the same steps by going to File | Script

File (ALT+F7) and open diaphora.py file, as shown below:

[Figure 18] Opening diaphora.py script in IDA Pro 8.3 for the second .idb database

This time Diaphora will compare the JULY’s database to AUGUST’s database, which is specified in the field

named SQLite database to diff against. In the Output windows two pieces of information came up: it took

over 05 minutes to generate performing the diffing process and there was a matching of 99.81% of the

binary functions, which are only five partial matches, one interesting match and two unmatched functions.

Any closed tab can be reopened by pressing F3 or even going to Edit | Plugins | Diaphora – Show results.

https://exploitreversing.com

20 | P a g e

The result produced by Diaphora is shown below, where primary is the newer version of the binary

(AUG/2022) and secondary is the older version (JULY/2022):

[Figure 19] Results of diffing produced by Diaphora.

According to the image above, there is an interesting match:

▪ Smb2QueryFileNormalizedName | ratio: 0.9678% | 58 blocks (previously were 63) | description:

Potential size check added.

We can also see that there are five partial matches:

▪ Smb2ValidateGetFileInfoParameters | ratio: 0.9995%

▪ Smb2ExecuteQueryInfo | ratio: 0.9991%

▪ Smb2ContinueQueryInfo | ratio: 0.9985%

▪ Smb2ValidateQueryInfo | ratio: 0.9930%

▪ Smb2QueryFileNormalizedName | ratio: 0.9781% | 58 Blocks (previously were 63)

There are two unmatched functions in the secondary binary (not available in the newer version):

▪ Smb2ValidadeVolumeObjectsMatch_Servicing

▪ Feature_Servicing_SMBNullCheck_38033381__private_isEnabled.

Finally, Diaphora has found 1063 functions that have a perfect match and there were no changes

between the two srv2.sys binaries (JULY and AUGUST/2022).

The report generated by Diaphora is very appropriate because it provides us with a clear status of

functions and their respective differences, but it also provides further possibility as we will learn soon.

As readers can see, there is a series of slight details, but for now they are only based on the little

information that we have retrieved above. It would be unnecessary to mention that every single piece of

information is relevant through the process of exploitation:

https://exploitreversing.com

21 | P a g e

▪ Our natural first target is Smb2QueryFileNormalizedName, which supposedly has received a size

checking code, which might be caused by a buffer overflow|underflow or even an integer

overflow| underflow. Of course, there are other potential reasons, and we do not know anything

about it because we have not analyzed the function yet and, so far, it is just a speculation.

▪ There are five partial matches, and one of them (Smb2QueryFileNormalizedName) indicates a

change for the number of blocks, but this kind of change itself does not mean that something useful

happened (it could occur a merge, for example).

▪ Two functions have been removed in the newer version (AUG/2022). There are multiple potential

reasons: the code has been incorporated by other functions, these functions had security issues,

functionalities have been eliminated, and so on.

Diaphora provides us with multiple good options beyond the comparison summary presented previously.

For example, taking as example the Smb2QueryFileNormalizedName function, right-click it and choose

Diff assembly in a graph and both graphs from AUGUST and JULY versions of the binary will be showed

containing necessary highlights to differences between them:

[Figure 20] Results of diffing assembly produced by Diaphora for a target function.

This overview already helps us to notice areas that suffered changes, which the yellow one’s present minor

or medium changes, and the red blocks offer an indication of the introduction of substantial changes or an

addition of new code (there is not an equivalent when compared with the other version).

Readers can zoom the graph easily on IDA Pro to see the assembly code, as shown on the next page:

https://exploitreversing.com

22 | P a g e

[Figure 21] Graph showing differences for the same function between two different versions of a binary.

We can examine differences between assemblies by right-clicking | Diff Assembly, as shown below:

[Figure 22] Assembly differences for a given function.

https://exploitreversing.com

23 | P a g e

Diaphora offers another interesting feature that shows and highlight the code differences throughout

pseudo-code by right-clicking | Diff pseudo-code, as shown below:

 [Figure 23] Pseudo code differences for a given function.

Do not forget to save the report: Edit → Plugins → Diaphora – Save Results. Later, we are going to have

the opportunity to load and show the results, which can be done through the same menu path with

Diaphora – Load Results and Diaphora – Show Results, respectively. There is an excellent advantage in

comparing side by side two pseudo codes already highlighted to quickly spot potential critical points.

Personally, I usually open three IDA Pro instances with the following setup:

1. The first instance contains the new code and its comparison with the old code (as shown above),

using Diaphora (preferred) and/or BinDiff. This instance will be my draft and guideline.

2. The other two instances contain the newer and older versions, respectively.

Eventually, we will be able to detect vulnerabilities only by analyzing the code statically, but in diverse

situations, it will not be possible, and we need to use WinDbg to support and clear our questions and

doubts. That is not a big deal, but it demands further setup and skills that will be useful over the journey.

Do not forget that sometimes finding vulnerabilities can seem easy, but it is not. And, no doubt, writing a

functional and stable exploit is usually hundreds of times more difficult and harder than it.

https://exploitreversing.com

24 | P a g e

9. General code notes

So far, we have commented about how to use both BinDiff and Diaphora, but that is only one stop along

the way, and the next step is to spot and review the first found differences in the code.

Based on BinDiff output, we have two main functions to focus right now:

▪ Smb2QueryFileNormalizedName

▪ Smb2ValidateWrite

There is a series of locations within the Smb2QueryFileNormalizedName function (87 % of similarity) that

present substantial differences when compared to its previous version, and readers can see them by right

on Smb2QueryFileNormalizedName function (inside Matched Functions tab when using BinDiff) and pick

up View Flow Graph, where on the left side (primary function – the newer one in this case) and the right

side, secondary, is the old (and vulnerable) code. The technique is to analyze the vulnerable code and

compare with the new one to under for understanding what has been changed. It might seem obvious, but

it is not because you must follow conditionals, make hypothesis, and understand what the consequences

of each logical decision will be. For example, in eventual opportunities, an already existing instruction

changes of place, from one address to another one, for preventing a logical issue as, for example, freeing a

memory address twice or copying a freed memory location.

Additionally, another function named Smb2ValidateWrite presented 98% similarity, and using the same

approach, readers will see the following location marked one address marked in red and other ones in

yellow.

There are quite a few instructions that we can examine in both functions, but there are also innumerous

pending questions that should be considered before proceeding. Except to the brief description offered by

Microsoft “SMB Client and Server Remote Code Execution Vulnerability”, we do not have anything else as

starting point and, of course, first doubts come up:

▪ Has the vulnerability been found only in the server component or both (client and server)?

▪ Did Microsoft only add patches for such vulnerabilities, or did they also insert any code that is no

related to the patch as improvement for performance?

▪ What do Smb2QueryFileNormalizedName and Smb2ValidateWrite do?

▪ Why did Microsoft remove Smb2ValidateVolumeObjectsMatch_Servicing and

Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled functions (readers should check

the Secondary Unmatched tab on BinDiff)? Have their functionalities migrated to the new code?

Certainly, we will need the maximum number of sources to search for prototype of functions, native APIs,

structures, and any kind of help, so a brief list of suggestions follows below:

▪ Virgilius project: https://www.vergiliusproject.com/

▪ Phnt: https://github.com/winsiderss/phnt

▪ NtDoc: https://ntdoc.m417z.com/

▪ ReactOS: https://github.com/reactos/reactos

▪ Windows SDK: C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\km (but not only).

Of course, any further and available resources found through Google is welcome.

https://www.vergiliusproject.com/
https://github.com/winsiderss/phnt
https://ntdoc.m417z.com/
https://github.com/reactos/reactos

https://exploitreversing.com

25 | P a g e

10. Review of kernel driver concepts and considerations about vulnerabilities

In the previous article from this series (https://exploitreversing.com/2023/04/11/exploiting-reversing-er-

series/) I offered a long explanation about kernel drivers, mini-filter drivers and even Windows Filtering

Platform (WFP). However, I want to perform a brief list of reviews and observations and, eventually, a

small amount of them might be new for readers:

▪ The DriverEntry function is the entry point for kernel drivers, and such function is called at IRQL ==

PASSIVEL_LEVEL (zero).

▪ A driver is represented by a driver object (DRIVER_OBJECT), but the entire communication with

clients is performed through a device object (DEVICE_OBJECT), which is created by invoking

IoCreateDevice function (actually, clients will interact with device objects through their handles).

There can be one or more associated with the driver objects.

▪ The client will open a driver’s device object by calling CreateFile function and providing symbolic

link argument created by invoking IoCreateSymbolicLink function.

▪ The communication between client and driver is based on requests and responses, and such

requests are represented (wrapped) by an IRP (I/O Request Packet).

▪ Drivers manipulate IRPs, which also have an or more associated structure (depending on the

number of layers in the device stack) whose type is IO_STACK_LOCATION. Later,

IoGetCurrentIrpStackLocation function will get the I/O stack location (IO_STACK_LOCATION) and

will parse it (from the current layer) to get information for IRP request.

▪ The number of I/O stack locations (IO_STACK_LOCATION) is related to the number of device

objects associated with this driver (represented by a DRIVER_OBJECT) over the driver stack.

▪ The communication between drivers across the driver stack is performed by passing the request

(IRP) down to the next driver in the stack. Each driver in the stack has the following options:

▪ Pass the request down to the next driver: the driver is not interested in processing this

request, so it forwards the IRP to the next driver by calling IoSkipCurrentIrpStackLocation

function, which modifies the pointer in the array of IO_STACK_LOCATION for that the next

driver receives the same IO_STACK_LOCATION that the current driver received, and

IoCallDriver function that sends the IRP to the driver associated with the provided device

object.

▪ Process the IRP request without replicating it to next layers and, once such processing has

finished, it calls IoCompleteRequest function, which returns the IRP to the I/O manager.

▪ A composition of the two options above.

https://exploitreversing.com/2023/04/11/exploiting-reversing-er-series/
https://exploitreversing.com/2023/04/11/exploiting-reversing-er-series/

https://exploitreversing.com

26 | P a g e

▪ Kernel drivers should have an unload routine, which is accessed through the driver object:

DriverObject → DriverUnload = UnloadRoutine.

▪ To get a pointer to a given object through a valid handle, kernel drivers use the

ObReferenceObjectByHandle function, which is a reference object function

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

obreferenceobjectbyhandle).

▪ Kernel drivers can use three different memory pools: Paged Pools, Non-Paged Pools and

NonPagedPoolNx (recommended). The most used functions to allocate these various kinds of

memory pools are ExAllocatePool, ExAllocatePoolWithTag, ExAllocatePool2 and ExAllocatePool3.

▪ A DRIVER_OBJECT represents a kernel driver, which contains a special member named

MajorFunction. This member holds a pointer to an array of function pointers, indexed by indexes

starting with IRP_MJ_ prefix, and that specifies all operations the driver supports such as

IRP_MJ_CREATE (it is usually implemented as a dispatch routine, which will be invoked through

NtCreateFile function later, because the client needs to have a handle to establish communication

with the device), IRP_MJ_WRITE, IRP_MJ_READ and mainly IRP_MJ_DEVICE_CONTROL or

IRP_MJ_INTERNAL_DEVICE_CONTROL.

▪ Furthermore, we should remember that driver dispatch routines (DRIVER_DISPATCH), which are

also named as callbacks, follow the following prototype: https://learn.microsoft.com/en-

us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_dispatch. Any non-used array element is

set with a pointer to the IoInvalidDeviceRequest routine. Therefore, readers will see something

like:

▪ DriverObject → MajorFunction[IRP_MJ_CREATE]= MyCreateDispatchRoutine

▪ DriverObject → MajorFunction[IRP_MJ_WRITE]= MyWriteDispatchRoutine

▪ DriverObject → MajorFunction[IRP_MJ_READ]= MyReadDispatchRoutine

▪ DriverObject → MajorFunction[IRP_MJ_DEVICE_CONTROL]=

MyDeviceControlDispatchRoutine

▪ DriverObject → MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL]=

MyInternalDeviceControlDispatchRoutine

▪ Clients (mostly from user mode) send and receive data from drivers through buffers, which are

usually involved with IRP_MJ_DEVICE_CONTROL, IRP_MJ_WRITE and IRP_MJ_READ dispatch

routines operations (as shown above). When managing read and write operation (IRP_MJ_WRITE

and IRP_MJ_READ), there are different transfer methods to perform the data transmission using

buffers, which are reviewed in the next two bullets.

▪ Buffered I/O (DeviceObject → Flags |= DO_BUFFER_IO): this method is supervised by the I/O

manager, which allocates a buffer from non-paged pool. As the memory address is allocated in the

non-paged pool by invoking any of mentioned functions above such as ExAllocatePool,

ExAllocatePoolWithTag or ExAllocatePool2 function then the address does not change, and it is

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_dispatch

https://exploitreversing.com

27 | P a g e

valid to any thread context. Additionally, it is not paged (without needing to lock down the physical

page). The data is returned to the client through a special kernel APC, which is executed right

before the scheduled thread is executed. If readers remember about APC injection (even using

user-mode APC), the principle is the same. Check about types of APC on:

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/types-of-apcs. As expected,

Buffered I/O is great for small buffers being used by devices such as mouse, keyboard, video, and

serial, but it is inefficient for large ones.

▪ Direct I/O (DeviceObject → Flags |= DO_DIRECT_IO): the approach followed by this method is to

allow access to the user buffer, but eliminating copy operations, and it is appropriate to manage

large amount of data, besides improving the performance. To make this technique possible, the I/O

Manager creates an MDL (Memory Descriptor List), which describes the buffer. As expected by

readers, the I/O Manager needs to check whether the memory address is valid and, to prevent any

paging out, so such memory buffer is locked, and both operations are accomplished by invoking

MmProbeAndLockPages function and taking as argument exactly a pointer to MDL recently

created. Therefore, the MDL works as a second mapping (or even an abstraction, and the first

mapping address comes from the original buffer allocated by the requesting thread/process) for

the “real address” and presents an advantage of being located in the kernel-side, so it is valid and

the same for any arbitrary thread. To get the address of the buffer (the original or first mapping

address), MmGetMdlVirtualAddress or MmGetMdlVirtualAddressSafe function must be called.

▪ When we are referring to device control operations (IRP_MJ_DEVICE_CONTROL /

IRP_MJ_INTERNAL_DEVICE_CONTROL), which the key API is DeviceIoControl(), there are

distinguished methods to access the buffer. However, the chosen access method is intrinsically

associated with the DeviceIoControl function, as shown below:

[Figure 24] DeviceIoControl prototype

▪ As readers can notice from the function’s prototype above, a few parameters are quite interesting:

▪ hDevice: it is a handle to the device, and this handle is retrieved through CreateFile

function.

▪ dwIoControlCode: it is the control code for the operation, which is calculated by the

CTL_CODE macro and given by the following prototype (C:\Program Files (x86)\Windows

Kits\10\Include\10.0.22621.0\km\wdm.h):

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/types-of-apcs

https://exploitreversing.com

28 | P a g e

[Figure 25] CTL_CODE macro definition

▪ The visual representation of the IOCTL code is the following:

[Figure 26] CTL_CODE macro scheme (credits: Microsoft)

▪ The CTL_CODE macro, as shown, also has parameters that demands a concise explanation:

▪ DeviceType: this parameter is a constant that defines the device type. Possible values are

described on: https://learn.microsoft.com/en-us/windows-

hardware/drivers/kernel/specifying-device-types.

▪ Access: this parameter determines the type of access required by the client for opening the

target device, which works as an access control to use or not the device as planned by the

client. A list of potential values is:

▪ FILE_ANY_ACCESS

▪ FILE_READ_DATA

▪ FILE_WRITE_DATA

▪ A combination of FILE_READ_DATA and FILE_WRITE_DATA.

▪ Function: this argument identifies the function to be executed by the driver, and values

equal and above of 0x800 can be used by vendors.

▪ Method: this argument identifies how data will be passed between the client and driver:

▪ METHOD_BUFFERED: this value determines that the transfer method is Buffered I/O

(it has already been explained).

▪ METHOD_IN_DIRECT or METHOD_OUT_DIRECT: this value determines that the

transfer method is Direct I/O for input or output buffer, respectively.

▪ METHOD_NEITHER: this value specifies that the I/O manager does not provide any

help for data transferring and is also not managing it. Thus, the system does not

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types

https://exploitreversing.com

29 | P a g e

provide any system buffer or even an MDL, and the driver itself is responsible for

handling the transference of data between the client and the driver.

As we are interested in analyzing the driver from a different point of view, we need to focus on finding

possible key functions/routines and areas that could offer security problems. Thus, other points could be

considered:

▪ The usual order of actions inside DriverEntry routine is:

▪ Build the Device Name and Symbolic Link strings using functions like RtlInitUnicodeString.

▪ Create a device using IoCreateDevice or IoCreateDeviceSecure functions. One of

parameters of IoCreateDevice function, DeviceCharacteristics, could being interesting if it

doesn’t contain the FILE_DEVICE_SECURE_OPEN value, which is usually specified for most

drivers, enforces that security checks (ACLs) are enabled and verified for file open requests

and guarantees that the same security settings are applied for requests to the device. In

other words, the I/O manager would not apply the correct ACL while attending the request.

For this reason, the recommendation is to use IoCreateDeviceSecure or

WdmlibIoCreateDeviceSecure functions because it applies security settings, block non-

privileged users from open a handle to and, in addition, it deletes the object when is it is no

longer necessary. However, even if the driver is not using IoCreateDeviceSecure function, it

is sometimes a bit more difficult to open the device without having additional information

that is not even expected. On the other hand, as offensive readers already know,

enumerating device objects and trying to open them is key :)

▪ Create a symbolic link for making the device’s access available for the client. Unfortunately,

not all drivers have such “friendly name”, and they could have been generated

automatically (FILE_AUTOGENERATED_DEVICE_NAME flag present in DeviceCharacteristics

parameter), which is the fact that we see “names” that are a sequence of hexadecimals.

Readers can see such hexadecimal names by opening WinObj tool, from Sysinternals suite,

and going to Device branch.

▪ Filling the dispatch table of the driver object (DEVICE_OBJECT).

▪ As expected, the main point of a driver communication is the DeviceIoControl function, which

provides an interface to communication between the application (client) and the kernel driver, and

this communication is controlled (and defined) by a IOCTL code (dwIoControlCode parameter).

There is a series of resources such as plugins, scripts, and websites to decode such IOCTL codes:

▪ DriverBuddyReloaded: https://github.com/VoidSec/DriverBuddyReloaded

▪ Windows Driver Plugin (original): https://github.com/FSecureLABS/win_driver_plugin

▪ Windows Driver Plugin (fork 1): https://github.com/alexander-pick/win_driver_plugin

▪ Windows Driver Plugin (fork 2): https://github.com/tacbliw/win_driver_plugin

▪ ioctl.py: https://github.com/h0mbre/ioctl.py

▪ OSR Online IOCTL Decoder: https://www.osronline.com/article.cfm%5earticle=229.htm

https://github.com/VoidSec/DriverBuddyReloaded
https://github.com/FSecureLABS/win_driver_plugin
https://github.com/alexander-pick/win_driver_plugin
https://github.com/tacbliw/win_driver_plugin
https://github.com/h0mbre/ioctl.py
https://www.osronline.com/article.cfm%5earticle=229.htm

https://exploitreversing.com

30 | P a g e

▪ Once the IOCTL code is decoded, we will have DeviceType, Access, Function and Method. No

doubt, the Access and Method are the most important parameters for us because we need them to

interact with the device and, eventually, explore the data transfer, which might be interesting. If

the driver specifies METHOD_BUFFERED as access method then basically the buffer (limited by its

size) is copied to the kernel and this action prevents a late changing, so it is more secure, even

though is not guarantee of having a secure code as, for example, a simple out-of-boundary write

operation means writing in a non-initialized memory, which might be translated in an eventual

compromising. If the driver specifies METHOD_NEITHER, the I/O Manager is not managing data

transfer, and attackers can change buffers’ properties such as its length or even its memory

allocation. Finally, if the driver specifies METHOD_IN_DIRECT or METHOD_OUT_DIRECT, the I/O

Manager is managing the buffer allocation and checking such buffer is accessible for reading or

writing according to value indicated in the Access parameter.

▪ In terms of code, the following fields are relevant for us (readers should check the previous article

for IRP fields):

▪ METHOD_BUFFERED: IRP→AssociatedIrp. SystemBuffer (input and output buffers). In

terms of buffer size, IRP→Parameters.DeviceIoControl.InputBufferLength field (from

IO_STACK_LOCATION) is used for input buffer and

IRP→Parameters.DeviceIoControl.OutputBufferLength field (from IO_STACK_LOCATION) is

used for output buffer. Both length fields should be checked before reading and writing

operations to prevent out-of-bonds read and write vulnerabilities.

▪ METHOD_IN_DIRECT and METHOD_OUT_DIRECT: IRP→AssociatedIrp. SystemBuffer (input

buffer) and IRP→MdlAddress (output buffer). The buffer size is represented by

IRP→Parameters.DeviceIoControl.InputBufferLength and

IRP→Parameters.DeviceIoControl.OutputBufferLength fields for input and output buffer

(described by an MDL), respectively. Same advice about length fields as mentioned above.

▪ METHOD_NEITHER: IRP→Parameters.DeviceIoControl.Type3InputBuffer field from

IO_STACK_LOCATION structure (input buffer) and IRP→UserBuffer field (output buffer).

The buffer size is provided by IRP→Parameters.DeviceIoControl.InputBufferLength and

IRP→Parameters.DeviceIoControl.OutputBufferLength fields (from IO_STACK_LOCATION

structure) for input and output buffers, respectively. Same advice about length fields.

▪ As readers can notice, there is a concise list of critical points:

▪ The provided data cannot be of a larger size than supported by the buffer.

▪ The buffer’s address must point to a valid address.

▪ The best scenario for us is when the drivers use METHOD_NEITHER.

▪ Buffer overflow would be the simpler attack in this case.

▪ If there is a buffer overflow, then a crash is most expected.

▪ A generic guideline for writing an exploit is not so complicated:

https://exploitreversing.com

31 | P a g e

▪ Get a handle the device object exposed by the target driver.

▪ Open the retrieved handle (CreateFile function).

▪ Allocate a buffer.

▪ Call the DeviceIoControl function by providing necessary information such as handle to

device object, IOCTL code (it regards the fact whether access and method access), input and

output buffers, and their respective sizes.

▪ Write a shellcode (eventually, the content comes from a file, so there is another CreateFile

function call) into the target buffer.

▪ The shellcode can perform token stealing (data-writing attack) or change any other

structure.

▪ Readers have already heard about arbitrary write vulnerability and arbitrary read vulnerability.

The latter one might be interesting to leak valuable information from memory. Nonetheless,

arbitrary write vulnerability is usually more attractive because allows an attacker to write a

shellcode in a controlled address to later dereference it, so executing the code.

▪ Unfortunately, different methods of attack depend on operating system protections, and on

Windows there are a lot of them, as for example, Memory Integrity (as known as Hypervisor

Protected Memory Integrity – HVCI), which restricts memory allocations that could be used to

compromise the system and, in practical terms, applying a W^X protection that imposes that an

allocated kernel memory might be executable, but not writable (and vice-versa).

▪ If Memory Integrity is not enabled (and it is not true because is enabled by default on Windows 11

in the current days), the possibilities are better because most processes have Integrity level as

Medium (read about it: https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-

integrity-control) then invoking NtQuerySystemInformation and EnumDeviceDriver functions

would be enough to bypass the KASLR and get the kernel’s base address and, as it is well-known,

we could need to disable SMEP (Supervision Mode Execution Prevention) via CR4, which would

allow a kernel driver to access/execute a code in a user mode buffer and perform an local elevation

of privilege. It would not be necessary to mention that arbitrary write vulnerability would be more

susceptible for drivers using METHOD_NEITHER method, and glaringly developers should never use

or work with such method because they will be losing the entire I/O manager support. That is one

of reasons for paying attention to the IOCTL mode, which will end with 11 in case of

METHOD_NEITHER (based on wdm.h). Readers are encouraged to check wdm.h file ("C:\Program

Files (x86)\Windows Kits\10\Include\10.0.22621.0\km\wdm.h"), where you will find interesting

information :

[Figure 27] Method codes (wdm.h)

https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

https://exploitreversing.com

32 | P a g e

[Figure 28] Device characteristics flags (wdm.h)

▪ Two notes about the last couple of bullets: previously attackers could overwrite the

HalDispatchTable function table with a user-mode address to reference our shellcode, however

this function’s address is randomized these days, and that is the motivation of bypassing KASLR.

Additionally, it would be necessary to bypass Memory Integrity to be able to allocate, write and

execute the shellcode, and as I mentioned, it is enabled by default.

▪ Another interesting point is that if attackers are trying to bypass ASLR/KASLR from a Low Integrity

process might need a leak and, in this case, a kernel-mode read primitive would be useful to get the

kernel base address.

▪ Security issues can come up from unexpected points like unchecked returned types or even due to

passing unprecise type arguments, which causes type confusion vulnerability.

Optionally, readers can obtain relevant information about device drivers from a running system and even

interacting with such drivers using excellent tools, which some of them offers a compiled version while

other one’s demand to compile the project:

▪ DeviceTree (excellent): https://www.osronline.com/article.cfm%5Earticle=97.htm

▪ System Informer: https://systeminformer.sourceforge.io/

▪ Object Explorer and Device Explorer: https://github.com/zodiacon/AllTools

▪ IRPMon: https://github.com/MartinDrab/IRPMon

▪ Ioctplus: https://github.com/VoidSec/ioctlpus (a fork from

https://github.com/jthuraisamy/ioctlpus).

▪ Windows Driver IOCTL Tool Suite (DIBF): https://github.com/nccgroup/DIBF

https://www.osronline.com/article.cfm%5Earticle=97.htm
https://systeminformer.sourceforge.io/
https://github.com/zodiacon/AllTools
https://github.com/MartinDrab/IRPMon
https://github.com/VoidSec/ioctlpus
https://github.com/jthuraisamy/ioctlpus
https://github.com/nccgroup/DIBF

https://exploitreversing.com

33 | P a g e

These tools are great and provide readers with excellent and outstanding information about installed

device drivers. The three last ones (IRPMon, Ioctplus and DIBF) are also useful for monitoring IRP requests,

sending IRP requests, fuzzing, and translating IOCTL code, respectively. Therefore, even though I will not

use all of them right now in this article, it is still recommended to know about them:

[Figure 29] Device Explorer

[Figure 30] DeviceTree (1)

https://exploitreversing.com

34 | P a g e

[Figure 31] DeviceTree (2)

Readers should notice that DeviceTree tool to provide us with all necessary information: driver’s general

information, supported major function codes, all device names, device characteristics flags, device flags,

security attributes, and other essential information.

[Figure 32] Object Explorer -- Object Manager

https://exploitreversing.com

35 | P a g e

[Figure 33] IRPMon – Configuration

[Figure 34] IRPMon – Monitoring (truncated – there are additional columns)

The original IOCTLplus repository does not offer an already compiled version, so execute the following

steps:

▪ Clone the repository: git clone https://github.com/jthuraisamy/ioctlpus

▪ Open the ioctlplus.sln solution on Visual Studio 2017.

▪ There will be a few errors, but do not worry about them.

▪ Close the solution.

▪ Open the solution up again and compile it.

https://github.com/jthuraisamy/ioctlpus

https://exploitreversing.com

36 | P a g e

The VoidSec’s version is updated and already compiled:

https://github.com/VoidSec/ioctlpus/releases/tag/2.4

[Figure 35] IOCTLplus

To decode the IOCTL code shown above we can iocode.exe from DIBF:

[Figure 36] iocode.exe

As expected, we have:

▪ The IRP is using METHOD_BUFFERED, which is safer than other options, but it is not always safe.

▪ The Device type is related to disk, which readers can confirm by checking the wdm.h file.

▪ The access is FILE_ANY_ACCESS, so the I/O manager sends the IRP for any caller that has a handle

to the file object to the target driver.

▪ Functions below 0x800 are reserved to Microsoft.

This procedure of decoding IOCTL is integrated into IDA Pro through plugins, which I already commented

on previously.

Finally, we have the System Informer tool, which is a multi-purpose tool:

https://github.com/VoidSec/ioctlpus/releases/tag/2.4

https://exploitreversing.com

37 | P a g e

[Figure 37] System Informer – Devices tab

I have quickly mentioned a small number of classes of vulnerabilities, but there are other ones that are

usually found on kernel drivers and user mode codes such as:

▪ Buffer overflow:

▪ https://cwe.mitre.org/data/definitions/120.html

▪ https://cwe.mitre.org/data/definitions/121.html

▪ https://cwe.mitre.org/data/definitions/122.html

▪ https://cwe.mitre.org/data/definitions/788.html

▪ Use-After-Free (UAF): https://cwe.mitre.org/data/definitions/416.html

▪ Integer Overflow:

▪ https://cwe.mitre.org/data/definitions/190.html

▪ https://cwe.mitre.org/data/definitions/680.html

▪ Type Confusion:

▪ https://cwe.mitre.org/data/definitions/704.html

▪ https://cwe.mitre.org/data/definitions/843.html

▪ Uninitialized Memory:

▪ https://cwe.mitre.org/data/definitions/457.html

▪ https://cwe.mitre.org/data/definitions/665.html

▪ https://cwe.mitre.org/data/definitions/824.html

▪ https://cwe.mitre.org/data/definitions/908.html

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/680.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/908.html

https://exploitreversing.com

38 | P a g e

▪ Double Free: https://cwe.mitre.org/data/definitions/415.html

▪ Race Conditions, Double Fetch (subset of Race Conditions) and TOCTOU (Time of Check, Time of

Use – it is a subset of Double Fetch and Race Conditions):

▪ https://cwe.mitre.org/data/definitions/362.html

▪ https://cwe.mitre.org/data/definitions/366.html

▪ https://cwe.mitre.org/data/definitions/367.html

▪ Null Pointer Dereference:

▪ https://cwe.mitre.org/data/definitions/476.html

▪ https://cwe.mitre.org/data/definitions/690.html

▪ Memory Leak:

▪ https://cwe.mitre.org/data/definitions/401.html

▪ https://cwe.mitre.org/data/definitions/772.html

▪ Out-of-bounds write/read, Write-what-where:

▪ https://cwe.mitre.org/data/definitions/123.html

▪ https://cwe.mitre.org/data/definitions/125.html

▪ https://cwe.mitre.org/data/definitions/787.html

▪ Off-by-one Error: https://cwe.mitre.org/data/definitions/193.html

▪ Elevation of Privilege/Privilege Escalation:

▪ https://cwe.mitre.org/data/definitions/250.html

▪ https://cwe.mitre.org/data/definitions/269.html

▪ Exceptional Conditionals: https://cwe.mitre.org/data/definitions/703.html

Most of the time, one vulnerability results in an another one. For example, an integer overflow might

cause a buffer overflow, as well as a double fetch could open an opportunity for a buffer overflow.

Furthermore, readers should remember about the involved context while referring to memory.

In this article, as we are discussing kernel driver, the word “memory” could mean stack, NonPagedPool,

NonPagedPoolNx (the recommended non-paged memory), and PagedPoolSession, depending on the code

being analyzed.

Microsoft has been adding a series of protections of the time which are focused on preventing exploitation

from the kernel side, and a limited list of them is:

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/703.html

https://exploitreversing.com

39 | P a g e

▪ Kernel Space Address Randomization (KASLR):

▪ https://www.offsec.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-

windbg-command/

▪ Driver Signature Enforcement (DSE):

▪ https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing

▪ Supervisor Mode Execution Protection (SMEP):

▪ https://www.microsoft.com/en-us/security/blog/2017/03/27/detecting-and-mitigating-

elevation-of-privilege-exploit-for-cve-2017-0005/

▪ https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/

▪ https://www.coresecurity.com/sites/default/files/2020-

06/Windows%20SMEP%20bypass%20U%20equals%20S_0.pdf

▪ Supervisor Mode Access Prevention:

▪ https://github.com/microsoft/MSRC-Security-

Research/blob/master/papers/2020/Evaluating%20the%20feasibility%20of%20enabling%20

SMAP%20for%20the%20Windows%20kernel.pdf

▪ https://lwn.net/Articles/517475/

▪ Virtualization-based Security (VBS):

▪ https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

▪ Kernel Data Protection (KDP):

▪ https://www.microsoft.com/en-us/security/blog/2020/07/08/introducing-kernel-data-

protection-a-new-platform-security-technology-for-preventing-data-corruption/

▪ Memory Integrity or Hypervisor Protected Code Integrity (HVCI):

▪ https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-

hvci-enablement

▪ Kernel DMA Protection:

▪ https://learn.microsoft.com/en-us/windows/security/hardware-security/kernel-dma-

protection-for-thunderbolt

▪ Microsoft Vulnerable Driver Blocklist:

https://www.offsec.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://www.offsec.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://www.microsoft.com/en-us/security/blog/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://www.microsoft.com/en-us/security/blog/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://www.coresecurity.com/sites/default/files/2020-06/Windows%20SMEP%20bypass%20U%20equals%20S_0.pdf
https://www.coresecurity.com/sites/default/files/2020-06/Windows%20SMEP%20bypass%20U%20equals%20S_0.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Evaluating%20the%20feasibility%20of%20enabling%20SMAP%20for%20the%20Windows%20kernel.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Evaluating%20the%20feasibility%20of%20enabling%20SMAP%20for%20the%20Windows%20kernel.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Evaluating%20the%20feasibility%20of%20enabling%20SMAP%20for%20the%20Windows%20kernel.pdf
https://lwn.net/Articles/517475/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.microsoft.com/en-us/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/
https://www.microsoft.com/en-us/security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-hvci-enablement
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-hvci-enablement
https://learn.microsoft.com/en-us/windows/security/hardware-security/kernel-dma-protection-for-thunderbolt
https://learn.microsoft.com/en-us/windows/security/hardware-security/kernel-dma-protection-for-thunderbolt

https://exploitreversing.com

40 | P a g e

▪ https://learn.microsoft.com/en-9us/windows/security/application-security/application-

control/windows-defender-application-control/design/microsoft-recommended-driver-

block-rules

Obviously, I am not including the already existing Kernel Patch Protection (KPP, that is also known as

Patch Guard) and HyperGuard, which readers can read two articles written by my colleague Yarden Shafir

(@yarden_shafir):

▪ https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-1-skpg-initialization/

▪ https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-2-skpg-extents/

Returning to the kernel drivers’ topic, I would like to leave further considerations:

▪ Drivers usually present issues related to returned values because most drivers do not evaluate

them and do not check whether the result is NULL or not, so it is advisable to check them.

▪ Never trust on passed arguments because values can have changed along the code and depending

on APIs.

▪ Drivers using Direct I/O approach (DeviceObject → Flags |= DO_DIRECT_IO) use MDL, which works

in a double mapping to memory, as I mentioned previously, and double mapping might involve

vulnerabilities as double fetching (I left about this class of vulnerability on previous pages).

▪ Using a pointer that supposedly refers to a type of object might cause a type-confusion

vulnerability, so if the driver code does not evaluate the type or even if the pointer is NULL, there is

an opportunity of exploitation.

▪ A lack of reference counting control might cause a UAF or even a Double Free vulnerability, and

mainly because these controls are usually very away each other and because there are situations

where the code might present unexpected decisions.

▪ It is highly relevant to underscore that since Windows 10 19H1 pool allocations has changed and

migrated to Segment Heap (Low Fragmentation Heap + Variable Size + Heap Backend + Large Block

Allocation), even though concepts like NonPaged, NonPagedNx and Paged pool have been kept.

Eventually this topic will be detailed when necessary to understand a specific context and concept,

and it an interesting theme to be included in next articles.

▪ Drivers (mainly device drivers) can cancel individual IRPs by invoking IoCancelIrp function, which

are associated with threads, and have not been processed yet. When cancelling an IRP is

mentioned, this action does not “drop” the IRP immediately, but the I/O manager grants a limited

time of few minutes to the IRP to be completed before it being considered timed out. In other

words, IRP requests should be completed as soon as possible, and the driver should have a

cancelation routine to prevent an IRP staying in the queue forever. Additionally, drivers can have

and implement their own Cancel routines (DRIVER_CANCEL callback) that are invoked by the I/On

Manager once the IoCancelIrp routine is called by the driver, and it is the Cancel routine that

completes user cancelled I/O requests.

https://learn.microsoft.com/en-9us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules
https://learn.microsoft.com/en-9us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules
https://learn.microsoft.com/en-9us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules
https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-1-skpg-initialization/
https://windows-internals.com/hyperguard-secure-kernel-patch-guard-part-2-skpg-extents/

https://exploitreversing.com

41 | P a g e

▪ In untold opportunities drivers present double fetch vulnerabilities, which happens when the same

buffer (for example) is accessed and checked/verified almost in sequence. However, status and

conditions might change between the first and the second access/verification (typical race

condition vulnerability), and such changes could cause bugs like buffer overflow and integer

overflow. Double fetching, which is a subset of race condition class, is also a possibility.

▪ Kernel drivers can monitor, by registering for notifications, whether processes and threads are

created and, consequently, act through callbacks. In this case, readers will be typical functions,

callback’s prototype, and structures such as:

o PsSetCreateProcessNotifyRoutineEx (PCREATE_PROCESS_NOTIFY_ROUTINE_EX

NotifyRoutine, BOOLEAN Remove): this routine registers a list of callbacks for receiving

process notification such as creation or deletion.

o PCREATE_PROCESS_NOTIFY_ROUTINE[_EX] callback: It is a callback routine implemented

to notify the caller when a process is created or even exits.

[Figure 38] PCREATE_PROCESS_NOTIFY_ROUTINE

o PS_CREATE_NOTIFY_INFO structure: it is a structure used in ProcessNotifyCallback

prototype.

o PsSetCreateThreadNotifyRoutine(PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine):

this routine is responsible for registering a callback that later will be notified and invoked

when a new thread to be created and even deleted.

o PCREATE_THREAD_NOTIFY_ROUTINE callback: it is a callback routine that is implemented

and invoked to notify the caller when a thread is created or deleted.

[Figure 39] PCREATE_THREAD_NOTIFY_ROUTINE

https://exploitreversing.com

42 | P a g e

o At the same way, there are other kind of notifications and callbacks based on image load

notification (PSSetLoadImageNotifyRoutine, PLOAD_IMAGE_NOTIFY_ROUTINE callback

function and _IMAGE_INFO structure) and Registry notification (CmRegisterCallbackEx,

EX_CALLBACK_FUNCTION callback function), for example.

o There is a last possible and quite interesting approach that the drivers perform the

registration to receive a notification when a handle for a specific object is opened or

duplicated, and we have ObRegisterCallbacks function and OB_CALLBACK_REGISTRATION

structure involved in this process. Such a structure takes us to the

OB_OPERATION_REGISTRATION structure, which is associated to two different possible

callbacks instead of only one: POB_PRE_OPERATION_CALLBACK callback function and

POB_POST_OPERATION_CALLBACK callback function that, as the name suggests, are

invoked before and after an operation (OB_OPERATION_HANDLE_CREATE,

OB_OPERATION_HANDLE_DUPLICATED) occurs, respectively.

During a driver analysis, there is a list of points to pay attention and how to proceed to collect vital

information:

▪ Check the driver using DeviceTree tool and write down information Device Name, Device Flags,

Device Characteristics, and mainly Security Attributes to confirm who can access the device and

which permissions are bound to users and groups. The first point is to verify Everyone and

Authenticated Users group permissions, and excessive permissions might offer us a better

perspective of locating vulnerabilities and even exploiting the vulnerability.

▪ Always verify whether the driver and its functions are evaluating a possible failed invocation, if they

are evaluating a potential returned value as NULL and whether there are wrong types being passed

to functions (most common than you can imagine due to returned pointers to buffers on memory).

These issues usually represent a quite relevant source of vulnerabilities, mainly when there are

associated memory related functions such as ExAllocatePool, ExAllocatePoolWithTag,

ExAllocatePool2 and ExAllocatePool3. Additionally, vulnerabilities classes like buffer overflow and

type confusion can come up easily from these problems.

▪ In specific, type confusion vulnerability may arise from ObReferenceObjectByHandle function,

which provides validation on a given object handles and should return a corresponding pointer, but

eventually a NULL appears as return, which would be used later by other routines and functions. I

suggest that readers check such function on the Microsoft website

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

obreferenceobjectbyhandle) and pay attention to its third argument (ObjectType).

▪ Search for a possible associated symbolic link, which is an argument of IoCreateSymbolicLink and

IoDeleteSymbolicLink functions. The symbolic link is quite valuable artifact for writing a quick client

program to interact with the driver.

▪ Open the kernel driver on IDA Pro and search for routines such as DriverEntry, CreateFile,

IoCreateDevice/IoCreateDeviceSecure and IoControlDevice. Once they are found, identify, and

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle

https://exploitreversing.com

43 | P a g e

interpret their arguments. For example, it would be interesting to verify whether

FILE_DEVICE_SECURE_OPEN flag has been specified or not as component of DeviceCharacteristics

parameter of IoCreateDevice function. DeviceTree tool is great for gathering such information.

▪ Identify the dispatch function and major functions (dispatch routines) such as IRP_CREATE,

IRP_MJ_CLOSE, IRP_MJ_WRITE, IRP_MJ_READ and, of course, IRP_MJ_DEVICE_CONTROL or

IRP_MJ_INTERNAL_DEVICE_CONTROL.

▪ Search for IOCTL codes and decode them. IOCTL code is an essential artifact and provide us with

guidelines about how to navigate in the kernel driver’s code through of function, method and

access information built in each of those IOCTL codes and understand what the context is and

involved operations. Mainly, using the same mentioned information, they offer directions about

how we can interact with the driver.

▪ Search and analyze the IoGetCurrentIrpStackLocation function, which accepts an IRP as argument

and as expected, returns the location of the current IO_STACK_LOCATION. The IRP structure offers

crucial details to understand what further operations and data we should expect from this driver.

▪ IRPs are passed down to another driver by using IoCallDriver function, so you should check

whether this call exists in the code and try to understand the respective data flow.

▪ Check for functions involved with memory allocation and manipulation like MmMapIoSpace

(responsible for mapping a provided physical address range to a non-paged system space),

IoAllocateMdl (responsible for allocating an MDL) and ZwMapViewOfSection (responsible for

mapping a view of section into the virtual address space).

▪ In special, as MmMapIoSpace (https://learn.microsoft.com/en-us/windows-

hardware/drivers/ddi/wdm/nf-wdm-mmmapiospace) potentially “copies” user buffer’s content

(from the process) into the kernel space as a non-paged system, so if its parameter somehow can

be controlled then we might have, at the limit, a write-what-where primitive on our hands

(remember CWE-123 mentioned previously).

▪ It would be unnecessary to mention, but equivalent functions to undo actions such as

ZwUnmapViewOfSection and MmUnMapIoSpace also provide us with possibilities of vulnerability

and eventually exploitation because we have the same memory’s pointers from the allocation

involved in both functions, obviously.

▪ Other two functions that also handle memory in the kernel side and are used by device drivers are

MmGetPhysicalAddress, which given the non-paged virtual address, it returns the physical address

(exactly the reverse of MmMapIoSpace function), and MmAllocateContiguousMemory (typically

called in the DriverEntry routine), which allocates a range of contiguous and non-paged physical

memory and maps it to the system address space. About the MmAllocateContiguousMemory

function, it is quite appropriate to emphasize that this physical memory region is being brough into

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmmapiospace
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmmapiospace

https://exploitreversing.com

44 | P a g e

the virtual address space of the kernel, which may open opportunities for an arbitrary write

vulnerability.

▪ Another critical and memory related function is MmGetSystemAddressForMdl, which returns a

non-paged memory pool for the buffer described by the MDL, and that driver should examine this

returned pointer and check whether is not NULL. As recommended by Microsoft, drivers must use

MmGetSystemAddressForMdlSafe instead. At the same way, there can be a possibility of finding a

vulnerability here.

▪ IRP cancellation (quickly described previously), regarding that different things can happen between

the cancellation order and the actual timeout of the IRP, might cause vulnerabilities issues such as

double free, UAF and race conditions.

▪ Write primitives can arise due to unnecessary exposure of MSR registers, which are control

registers provided by the processor implementation for range of goals such as debugging, tracing,

performance and even enabling processor features. In our case, our focus are registers like wrmsr

and rdmsr (Intel® 64 and IA-32 Architectures Software Developer’s Manual – Volume 4 --

https://cdrdv2.intel.com/v1/dl/getContent/671200), which are involved with system calls through

the MSR _LSTAR register that holds a function pointer that is called one a system call occurs, and

this function pointer might point to an arbitrary code to be executed whether we could change it.

Readers can find occurrences of these registers by using its search options.

▪ Do not forget to check all references to these functions. Most of the time what we are looking for is

around such these cross-references.

I will not be reviewing concepts about KDM, which is a high-level interface over MDM (and has the same

security issues) and mini filter drivers, which I already explained in good details in my previous article

(https://exploitreversing.com/2023/04/11/exploiting-reversing-er-series/).

11. Analysis of binary differences

Returning to analysis of srv2.sys driver and its respective versions and binary diffing, I am going to do a

quick analysis of binary diffing and also check the reversed codes on IDA Pro. However, these are only a

few of the available steps that are necessary while investigating likely security issues. In general, a

recommended procedure is:

▪ Learn fundamentals about the target (kernel driver and mini-filter drivers in your case).

▪ Search for involved binary’s versions and execute follow-on preparation.

▪ Perform binary diffing on the target drivers.

▪ Analyze the binary diffing and try to catch any initial security issue.

▪ Do reverse engineering of one or both files used to binary diffing.

▪ Prepare one or two virtual machines with exactly the vulnerable driver’s version.

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://exploitreversing.com/2023/04/11/exploiting-reversing-er-series/

https://exploitreversing.com

45 | P a g e

▪ Interact with the driver using different methodologies and tools.

▪ A usual and good approach is, if the driver is not so complex, try to write a client program (C/C++,

cPython and PowerShell) to submit requests to the driver.

▪ Using WinDbg, try to set up breakpoints on key routines and functions of the vulnerable driver and

find ways to “activate them” (hit them) using daily operations from the own operating system.

▪ Study the driver and the entire involved subsystem in depth. It takes a long time, but it is worth

because you will have better conditions to find other vulnerabilities that have not been found

previously.

▪ Perform fuzzing on the driver.

▪ Repeat part of this procedure to each new finding.

▪ Note 1: if there is one vulnerability in a piece of code, odds of finding new ones are considerable.

▪ Note 2: it is not because a code has been analyzed by other professionals that do not exist

additional vulnerabilities there.

Obviously, this is an incomplete procedure (there are additional steps), but it could offer a small number of

directions to readers to know what could be done over the period of the investigation. In this article I will

not go too far because I would like to comment about these topics in the next articles of this series, but it is

still fair to provide readers with this initial information in this article.

Before we proceeding to the binary diffing analysis, there are two interesting IDA Pro plugins (the second

one I have already mentioned previously in this text) that can be useful for readers in different analysis and

contexts beyond this article too:

▪ DriverBuddyReloaded: https://github.com/VoidSec/DriverBuddyReloaded

▪ MsdocViewer: https://github.com/alexander-hanel/msdocsviewer.git

DriverBuddyReloaded has been written by Paolo Stagno (Twitter/X: @Void_Sec) and offers interesting

resources such as decoding one or all IOCTL codes present in the driver, detecting potential and usual

vulnerable functions, finding opcodes in data sections and much more. Once of conditions to install such a

plugin is that is necessarily have IDA Pro 7.5 or newer. To install it:

1. Make sure that IDA Python is using the same Python version that your system:

▪ Open IDA Pro 8.3 and execute the following commands in the IDA Python prompt:

▪ import sys

▪ sys.version

▪ Open a Terminal / Command Prompt and execute python -V

▪ If versions do not match, it is necessary to adjust the IDA Python version by executing

idapyswitch.exe (from C:\Program Files\IDA Pro 8.3 folder) and choosing the correct Python

version.

2. Install the plugin:

a. Clone the DriverBuddyReloaded plugin: git clone

https://github.com/VoidSec/DriverBuddyReloaded

https://github.com/VoidSec/DriverBuddyReloaded
https://github.com/alexander-hanel/msdocsviewer.git
https://github.com/VoidSec/DriverBuddyReloaded

https://exploitreversing.com

46 | P a g e

b. Or download it:

https://github.com/VoidSec/DriverBuddyReloaded/releases/download/1.6/DriverBuddyRelo

aded.zip

c. Copy the DriverBuddyReloaded.py and DriverBuddyReloaded folder to C:\Program

Files\IDA Pro 8.3\plugins\ folder or %APPDATA%\Hex-Rays\IDA Pro\plugins\ folder.

Msdocviewer is a tool created by Alexander Hanel (Twitter/X: @nullandnull) consists of two parts, which

the first one is the run_me_first.py script that searches for all markdown files in Microsoft repositories,

checks whether the document is related to a function, copies the document to a directory and then

renames the file with their corresponding API name.

The second part is an IDA plugin (ida_plugin/msdocviewida.py) that displays the document in IDA. To

install it, execute:

▪ git clone https://github.com/alexander-hanel/msdocsviewer.git

▪ cd msdocviewer

▪ git submodule update --init –recursive

▪ python run_me_first.py

▪ Edit ida_plugin/msdocviewida.py and add the directory path of apis_md to the API_MD variable

(currently on line 18). In my case: API_MD = r"c:\github\msdocsviewer\apis_md"

▪ Copy msdocviewida.py to the IDA plugin directory:

o cp ida_plugin\msdocviewida.py "C:\Program Files\IDA Pro 8.3\plugins"

▪ If all steps have been executed correctly, open a binary on IDA Pro, go to disassembly or pseudo-

code, put the mouse’s pointer on a Windows API and press CTRL+SHIFT+Z:

[Figure 40] Msdocviewer plugin

https://github.com/VoidSec/DriverBuddyReloaded/releases/download/1.6/DriverBuddyReloaded.zip
https://github.com/VoidSec/DriverBuddyReloaded/releases/download/1.6/DriverBuddyReloaded.zip
https://github.com/alexander-hanel/msdocsviewer.git

https://exploitreversing.com

47 | P a g e

As I have emphasized previously, the goal of this article is to show techniques and procedures to allow

readers to make their own analysis, so I am not concerned about interpreting vulnerabilities or even

writing exploits right now.

If readers remember about our binary diffing section, we had two functions that are different in srv2.sys

from AUG/2022 when compared to its version from JUL/2022: Smb2ValidateWrite and

Smb2QueryFileNormalizedName. Refreshing details that we had viewed about Smb2ValidateWrite, we

have:

[Figure 41-A] BinDiff: Smb2ValidateWrite

In terms of Assembly code from IDA Pro view, we have:

[Figure 41-B] IDA Pro: Smb2ValidateWrite

https://exploitreversing.com

48 | P a g e

In terms of pseudo code (it is recommended to synchronize IDA-View and Pseudocode tabs) IDA Pro

resolves the structure and shows the following code:

[Figure 42] IDA Pro: Smb2ValidateWrite (pseudo code)

No doubt the pseudo code seems better, and considerations and questions come up:

▪ What is WPP?

▪ What is the WPP_GLOBAL_Control structure?

WPP means Windows Software Trace Preprocessor and it is used to trace operations of a software

component as an application, and user-mode or kernel-mode driver. It helps to improve the tracing and it

is very useful for debugging code through an approach like Windows event logging services.

WPP_GLOBAL_Control is a pointer to structure of type _DEVICE_OBJECT, which you have already seen in

the previous article, and its first fields are shown below:

[Figure 43] _DEVICE_OBJECT structure (first fields only)

According to Microsoft Learn, the Timer field holds a pointer to a timer object (IO_TIMER), and it allows

the I/O manager to call a timer routine every second. Furthermore, it is read/write member.

IDA Pro shows us HIDWORD and BYTE1 macros, which are used to access smaller parts of a variable:

https://exploitreversing.com

49 | P a g e

▪ HIDWORD: returns the high part of a DWORD (double word).

▪ BYTE1: returns the second byte of a given data in memory.

These macros are defined in C:\Program Files\IDA Pro 8.3\plugins\hexrays_sdk\defs.h, where readers

can see the following:

[Figure 44] Macros definition in defs.h

A last thing to observe is the prototype of the Smb2ValidateWrite function:

▪ __int64 __fastcall Smb2ValidateWrite(__int64 BugCheckParameter4)

The __fastcall convention specifies that four arguments are passed into registers RCX, RDX, R8 and R9, and

the remaining one are passed on the stack, and the prototype indicates that this function accepts one

argument. If we check the respective Assembly code, we have:

[Figure 45] Smb2ValidateWrite: assembly code

https://exploitreversing.com

50 | P a g e

This function would have apparently four arguments, even though the decompiler has assigned only one,

and this one is usually used as a BugCheckParameter, which is used to inform to callbacks the bug check

parameters that were passed to KeBugcheckEx function. However, we do not have any information here

and, at least for this function, BugCheckParameter4 represents a structure, which we don’t know the

associated type and anything else, and initially we can click on this parameter and create a new structure

by right clicking on the choosing Create a new structure type, and IDA Pro will show us the following:

[Figure 46] Create a new structure type

Honestly, I do not like this approach because of gap fields, and I prefer to create an array with multiple

DWORD/QWORD elements, but right now it helps to improve the code, even though we do not know

names and context of each of its fields. You can repeat it with other structures throughout the function.

Checking cross-references, we have:

[Figure 47] Smb2ValidateWrite: cross references

RUNTIME_FUNCTION is a structure used for exception handling and stack unwinding. This structure

represents a table-based exception handling entry with three fields: function start address, function end

https://exploitreversing.com

51 | P a g e

address and unwind info address, and you will usually see UNWIND_INFO data info structure together,

which is used to record associated effects that a function has on the stack pointer and also the location

that nonvolatile registers are saved (stored) on the stack.

If readers list the functions (CTRL+F3) called by Smb2ValidateWrite, you are going to see the following

ones: Smb2VerifyFileEx, Smb2VerifySessionExEx, Smb2VerifyTreeConnect and _Smb2SetError. Although

we are not analyzing details right now, this is essential information for deeper analysis in future articles.

Examining the code, we find strings like "onecore\\base\\fs\\remotefs\\smb\\srv\\srv.v2\\smb2\\write.c",

which indicates that this function is really related to SMB2 writing operations.

The binary diffing of Smb2ValidateWrite function has shown only a few details until now, and only with

these facts we do not have means to state anything precise, and it might be that:

▪ The change is related to performance tracing and debugging (highly likely).

▪ The change is related to any kind of race condition (very unlikely).

It is time to get a quick view of Smb2QueryFileNormalizedName function, which presents many functions’

changes between both versions of srv2.sys, which a few of blocks did not exist previously and other ones

have been patched, as shown below (AUG/2022 – newer version):

[Figure 48] BinDiff: overview of changed functions and its respective list

BinDiff continues to be one of the most used and powerful tools to find vulnerabilities. However, there is

another great option, and it is time to demonstrate Diaphora, which offers excellent features.

https://exploitreversing.com

52 | P a g e

Right clicking on Smb2QueryFileNormalizedName function (Interesting Matches tab from Diaphora),

readers will get the following, as I already shown before for this same function:

[Figure 49] Diaphora – pseudo code diffing (truncated list)

Although I have truncated the comparison above, it is quite recommended that you pay attention and

make note of potential and relevant changes. However, there are good considerations here:

▪ In srv2.sys, there is a list of five addresses that seemingly (check next sentences) did not exist in the

srv2.sys’s previous version (JUL/2022) and other 14 functions that have changed.

▪ Do not assume that blocks have been added or removed because, in innumerable opportunities,

they might have been just relocated or reordered over the code.

▪ Do not focus only on new blocks in the updated version of the driver, but mainly on existing ones

from the previous version because it is usually where vulnerabilities have been patched.

▪ It is always much better to open different IDA Pro instances focusing on the same function

(Smb2QueryFileNormalizedName) for both versions of functions (older and newer one) and follow

the code according to shown by Diaphora, making every single possible note because, according to

my experience, there will be useful later.

▪ It is advisable to examine the code, change and add types, structures, and enumeration you already

know to produce a better code to analyze (mainly whether you are using IDA Pro pseudo code).

▪ Probably you will not have the appropriate context about what is happening, then it is time to

examine the entire driver searching and interpreting critical routines, symbolic links, dispatch

functions, permissions, IO_STACK_LOCATION, and so on.

https://exploitreversing.com

53 | P a g e

▪ Certainly, type confusion and race conditions are harder to spot at the first moment, but you will

find them too.

▪ There is a large list of functions to pay attention to while analyzing Windows C/C++ programs and

driver, in special. A concise list of them follows below:

[Figure 50] A concise list of principal functions that can cause vulnerabilities

▪ As I reaffirmed previously, I will not spot bugs or vulnerabilities in this article, but based on the list

above, few instructions, functions, and routines from the old version of srv2.sys might be

▪ CopyMemory

▪ EnterCriticalSection

▪ ExAcquireResourceSharedLite

▪ ExAllocatePool

▪ ExAllocatePool2

▪ ExAllocatePoolWithTag

▪ ExFreePoolWithTag

▪ ExReleaseResourceLite

▪ IoRegisterDeviceInterface

▪ IofCallDriver

▪ MmAdvanceMdl

▪ MmAllocateContiguousMemory

▪ MmAllocateContiguousMemoryEx

▪ MmAllocateMappingAddress

▪ MmAllocateMappingAddressEx

▪ MmAllocateMdlForIoSpace

▪ MmAllocatePagesForMdl

▪ MmAllocatePagesForMdlEx

▪ MmBuildMdlForNonPagedPool

▪ MmGetSystemAddressForMdl

▪ MmGetSystemRoutineAddress

▪ MmGetSystemRoutineAddressEx

▪ MmLockPagableCodeSection

▪ MmLockPagableDataSection

▪ MmMapIoSpace

▪ MmMapIoSpaceEx

▪ MmMapLockedPages

▪ MmMapMdl

▪ MmProtectDriverSection

▪ MmProtectMdlSystemAddress

▪ MmQuerySystemSize

▪ MmSizeOfMdl

▪ MmUnlockPagableImageSection

▪ MmUnlockPages

▪ MmUnmapIoSpace

▪ MmUnmapLockedPages

▪

▪ ObGetObjectSecurity

▪ ObReferenceObjectByPointer

▪ ObRegisterCallbacks

▪ ObfReferenceObject

▪ PsCreateSystemThread

▪ RtlCopyMemory

▪ RtlMoveMemory

▪ RtlSecureZeroMemory

▪ RtlZeroMemory

▪ ZwUnloadDriver

▪ ZwUnmapViewOfSection

▪ ZwWriteFile

▪ _mbslen

▪ _mbstrlen

▪ _memccpy

▪ _snprintf

▪ _sntprintf

▪ fopen

▪ lstrlen

▪ memcpy

▪ memmove

▪ realloc

▪ sprintf

▪ sprintfA

▪ sprintfW

▪ strlen

▪ swprintf

▪ wmemcpy

▪ wmemmove

▪ wnsprintf

▪ wnsprintfA

▪ wnsprintfW

▪ wsprintf

▪ wsprintfA

▪ wsprintfW

▪ wvnsprintf

▪ wvnsprintfA

▪ wvnsprintfW

▪ wvsprintf

▪ wvsprintfA

▪ wvsprintfW

▪ wcslen

https://exploitreversing.com

54 | P a g e

interesting to take a first look regardless of the Microsoft report about the vulnerability and

absolutely without entering in any detail or interpretation.

▪ Once again, if you need any structure and even check for unknown functions, this is a compact list

of options that you have:

o Virgilius project: https://www.vergiliusproject.com/

o Phnt: https://github.com/winsiderss/phnt

o NtDoc: https://ntdoc.m417z.com/

o ReactOS: https://github.com/reactos/reactos

o ReactOS docs: https://doxygen.reactos.org/index.html

o Windows SDK: C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\km (but not

only).

▪ Another point that you are going to learn quickly is that static analysis can have serious limitations

and, in different opportunities, you will have to use a debug to understand what is going on. I will

talk about it in future articles.

▪ Certainly, analyzing pseudo code is easier than the respective assembly code, but sometimes the

pseudo code will not show a good picture and precise code, so you will have to conduct the analysis

through the assembly code.

▪ Another hint is to use the graphical mode of IDA (activated by TAB key) to understand the

coverage and flow of execution of the code.

▪ Remember that the most vulnerabilities come from the following classes:

o Null-dereference

o Buffer overflow

o UAF

o Double free

o Integer Overflow

o Out-of-bounds write/read

o Off-by-one error

▪ One of most common errors you will see is that codes either do not verify that arguments of

functions, as pointers, are null or do not check whether their returned are a valid value.

▪ Regardless of whether there is or not an issue in the code that we are quickly analyzing, there are

still relevant points that might deserve attention while analyzing code.

▪ To these first comments I will use the following pieces of code of srv2.sys from the old (vulnerable)

and updated versions of our comparison:

https://www.vergiliusproject.com/
https://github.com/winsiderss/phnt
https://ntdoc.m417z.com/
https://github.com/reactos/reactos
https://doxygen.reactos.org/index.html

https://exploitreversing.com

55 | P a g e

[Figure 51] Smb2QueryFileNormalizedName routine: first lines of the pseudo code (previous version)

https://exploitreversing.com

56 | P a g e

Observe highlight pieces of the old code and pay attention to key functions in the nextone from the

updated version of the driver, which represent approximately the same code from the newer version:

[Figure 52] Smb2QueryFileNormalizedName routine: first lines of the pseudo code (updated version)

There are considerations that are appropriate to this moment, regardless of any specific error or

vulnerability, and eventually such comments can bring insights for readers.

Before analyzing any code, I suggest trying to improve the code whether is possible. As readers quickly will

notice, it will be not possible in different situations because there are uncountable undocumented

functions, variable types, structures, enumeration and so on. We can try to search for them on Google or

even on GitHub, but it is quite hard finding something. As this binary is a driver, it is useful to add the

following Type Libraries (SHIFT+F11) into IDA Pro: ntddk64_win7 and ntddk64_win10. Additionally, as the

code uses types defined in the SDK (C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\), we

must insert the mssdk_win10 type library too. At the same way, add the following Signatures (SHIFT+F5)

into IDA Pro: ms64wdk, mssdk64 and vc64ucrt. As a series of SMB2 functions are undocumented, we do

not have any information about structures, data types, global variables, local variables, and eventual

classes that could be exported by srv2.pdb file. To prove it, retrieve the srv2.pdb symbol file by executing

the following command:

▪ symchk /v /r C:\Users\Administrator\Desktop\JUL_KB5015882\srv2.sys /s

srv*C:\symbols*https://msdl.microsoft.com/download/symbols

https://exploitreversing.com

57 | P a g e

Although there are much better tools to verify a symbol file’s content, readers can use dbh.exe tool from

SDK to do a quick inspection:

[Figure 53] Examining symbols

As we can notice from the output above, there is not any exported type, and we only have the list of

functions and associated objects (strings).

The first issue to improve the code, as we do not know function prototypes and parameter’s types, this

prevents us to apply such types on the pseudo code. As an example, the function readers are seeing on

Figure 51 has its prototype as __int64 __fastcall Smb2QueryFileNormalizedName(__int64 a1). As

expected, its calling convention is __fastcall (usual for Microsoft APIs), but we do not have any idea about

the content of a1 or even if its type is really __int64. This function is called from Smb2QueryFileNormalize

routine, but there we also do not have a concrete fact that provide us with the argument’s type.

I have already mentioned previously WPP (Windows software trace processor), and I would like to leave

additional information about it. It can be used with kernel drivers and user-mode drivers and works as an

instrumentation mechanism that is useful for tracing notifications, I/O activities, and memory allocations,

which may be one of reasons of its usage here in the shown code. The Timer field is a pointer to a time

object, which allows the I/O manager to call a timer routine every second.

https://exploitreversing.com

58 | P a g e

Routines with WPP_SF_ prefix are generated automatically and, as readers will see, they are found in

different kernel drivers.

The body of WPP_SF_q routine is the following:

[Figure 54] Examining symbols

According to image above, we can see that it calls pfnTraceMessage function pointer that references a real

function, whose address is retrieved from WppLoadTracingSupport function and is set by

MmGetSystemRoutineAddress function, which returns a pointer to the WmiTraceMessage function. This

function is responsible for adding a message to the output log for the WPP software tracing session. Thus,

on line 10, the function being called is WmiTraceMessage. As I know the prototype of WmiTraceMessage

function from MSDN (https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

wmitracemessage), and use it to rename the possible variable and apply the enumeration’s type to one of

its parameters. Returning to the main picture (Figure 51), pay attention to line 23 and you will see a line as

“(_GUID *)&WPP_6285cecdc58f32c64ce6ba6b855a6046_Traceguids”, which clearly shows us that it is

GUID. However, IDA Pro automatically offers us in the IDA View the following information:

[Figure 55] IDA View: annotation

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-wmitracemessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-wmitracemessage

https://exploitreversing.com

59 | P a g e

The annotation tells us the referred GUID (6285cecd-c58f-32c6-4ce6-ba6b855a6046) is associated with:

▪ A concern about issues of insufficient memory allocation.

▪ If the error happens then it is logged as DEBUG_ERROR.

▪ It indicates that it is related to SMB2_QUERY_INFO, which is a packet type sent by a client to

request information on a file, named pipe or even an underlying volume.

Observing the annotation from Figure 55, another two good points are: what does mean TMF? How does

IDA get this information?

TMF comes from Trace Message Format File, and it contains instructions for parsing and formatting the

message generated by the trace provider, which uses ETW (Event Tracing for Windows) to generate trace

messages or trace events. These TMFs are inside the symbol file that, in our case, it is srv2.pdb. To extract

these trace message format (.tmf) files we can use Tracepdb.exe, which is installed when you install WDK,

Visual Studio and Windows SDK. I have created a tmf folder, copied the srv2.pdb file to there and executed

the tracepdb.exe:

[Figure 56] Extracting TMF files with tracepdb.exe (truncated output)

The output is long, but you are going to find the following TMF file named 6285cecd-c58f-32c6-4ce6-

ba6b855a6046.tmf, which represents our GUID found previously. It is trivial to see its content:

[Figure 57] Tmf file overview (truncated output)

https://exploitreversing.com

60 | P a g e

The reason I have highlighted message 36 is because according to line 18 (Figure 51) the message number

is 36, and checking such a message in TMF file we can confirm that is exactly the same message presented

by the disassembler on the IDA View. At the same way, readers can also observe other messages scattered

throughout the code, and it offers good hints (annotations) about what the code is doing, the kind of

SMB2 packet involved and mainly concerns from programmers by have instrumented that portion of the

code, which could also indicate possible vulnerabilities’ paths to be explored.

Proceeding with our overview about the code, two first things that is always recommended to do are to

check whether the code verifies eventual NULL values are passed to functions/routines and it also checks

all returned values. It could be surprising, but such kinds of issues are more usual than could be expected.

Honestly, I do not evaluate such issues as mistakes because writing large codes is always a challenging task,

and it is natural to forget things.

On line 28 (previous version of the driver, on figure 51, and remember that I have collapsed the local

declarations), we find the ExAcquireResourceSharedLite function, which is used to acquire the given

resource for shared access by the calling thread. Therefore, as readers already know, shared resources

accessed by threads offer a potential source of race conditions whether the synchronization is incorrectly

implemented for writing operations (not in this case). Additionally, the invocation of this routine did not

belong to an if-else statement, but it has moved inside the if-else condition, which might indicate a change

of logic. In this case, I always recommend readers to check the visual representation offered by IDA Pro:

[Figure 58] Old driver on the left and new driver on the right.

No doubt, it is easier to see and understand the logic of programming by using graphs, and as I mentioned

previously, it is direct to check whether arguments and returned values (test [eax] [eax] instruction or

similar) have been verified.

https://exploitreversing.com

61 | P a g e

The same ExAcquireResourceSharedLite function, from line 28, has two parameters that are a pointer to a

resource (PERESOURCE – from wdm.h header file), which is a structure used by drivers to implement

shared or exclusive synchronization, and a Boolean flag (Wait), which indicates whether the function must

or not wait for the resource until it can be acquired. As it is set to 1 then it will wait for it. Nonetheless,

there are few details:

▪ For now, we do not know what is v1 or v5 (yes, they can be structures), and we only know that

Smb2QueryFileNormalizedName routine is called from Smb2ExecQueryInfo routine. V5 parameter

comes from v1 local variable, which is derived from a1 parameter that we also do not do anything

about and that serves as parameter for Smb2QueryFileNormalizedName routine.

▪ The returned value is not evaluated as well the first parameter, which the output, is not assessed

too, and it is used, as pointer, for setting the v8 value. Of course, it could not be a problem here,

but any issues with such an instruction have the potential to cause a DoS, for example.

About the variable’s v1 and v5 (mainly v5), it might be difficult to conclude its type. Look at the function

once more:

▪ ExAcquireResourceSharedLite((PERESOURCE)(*(_QWORD *)v5 + 80i64), 1u);

As the first parameter of this function is a pointer to _ERESOURCE type, so the task is to discover the type

we could try on v5 that, once dereferenced, and added to 80 provide us with a _ERESOURCE type. There is

an additional issue here because we do not know whether it is a well-known type or a type that we do not

know previously (it not public or can be a customized type). The context does not help us:

▪ (line 01): __int64 __fastcall Smb2ExecuteQueryInfo(__int64 a1)

▪ (line 05): v1 = *(_QWORD *)(a1 + 504);

▪ (line 09): v5 = *(_QWORD *)(*(_QWORD *)(v1 + 0x40) + 0x70i64);

As readers see, we do not know a1 (parameter), so we do not know about v1 and of course we do not

know about v5. If we return to Smb2ExecuteQueryInfo (the caller of Smb2ExecuteQueryInfo routine), a1

is also its parameter, and it is involved with a different Smb2* routines, but in special as part of one of

parameter of SRV_PERF_ENTER_EX routine, which seems to help in the instrumentation operation. Finally,

Smb2ExecuteQueryInfo routine is called at runtime.

Even that v5’s type is a public structure, it is still quite difficult to find statically the exact structure to be

applied to v5, which should have a member in its offset 0x50 that is a pointer to _ERESOURCE, and it is

usually worse than it because most structures hold other structures as their members.

Readers could try the following approach that is completely imprecise, but sometimes it produces results.

As you are searching for a structure that uses _ERESOURCE type as its member, you might check the

Virgilius’ project page for such structure and at the bottom of the page you will find a section named “Used

in”, which tells you which structure use _ERESOURCE type as a type of a member. However, it is time

consuming task because most of these structures have other structures as members (all of them available

on Virgilius), and you will need to import one by one before importing the target structure. Once you have

imported it, you can change the v5’s type and check whether get something useful. It is fair to say that

adding a new structure or importing a header file into IDA Pro’s database demands attention to details

and, eventually, it might be a complicated task.

https://exploitreversing.com

62 | P a g e

Steps to add structures copied from Virgilius are almost direct:

1. Go to Local Types tab (SHIFT + F1), press the INSERT key, and copy the structure from Virgilius’s

page into the textbox.

2. Change any reference from PVOID, PVOID* and PVOID** to QWORD, QWORD* and QWORD**

respectively because structures here do not accept VOID type and its variants.

3. Click OK. If everything goes well, IDA Pro will show the structure as imported. If mistakes have

occurred, check the Output window for errors. Probably one or more structures are missing and

should have been added previously.

To import a header file that you already had previously or customized it, it takes a different approach:

1. Install Visual Studio, and make sure to install C++ Clang Compiler for Window and MSBuild

support for LLVM(clang-cl) toolset components.

2. Add the Clang’s binary folder to the PATH environment variable: C:\Program Files\Microsoft

Visual Studio\2022\Community\VC\Tools\Llvm\x64\bin.

3. Adjust the IDA Pro compiler’s setting to Clang and, in this case, for 64-bit binaries:

[Figure 59] IDA Pro Compiler Settings

If the target’s platform was 32-bit,

so the argument would be:

▪ -target i386-pc-win32 -x c++

For additional reference, check:

▪ https://hex-

rays.com/tutorials/idaclang/

idaclang_tutorial.pdf

https://exploitreversing.com

63 | P a g e

4. Go to File → Parse C Header File and pickup its header file.

5. Check the Output View and verify if there is any error.

6. Go to Local Types tab (SHIFT + F1) and verify whether structures are imported.

It is opportune to mention that this header file (.h extension) should contain only structure definitions and

enumerations, and try to avoid complicated header files that, eventually, might cause issues during the

parse. Additionally, as numerous header files refer to other header files via include directives, they must be

in the same directory or added inline to compose a single header file.

Only to supplement our explanation about creating or event importing a structure into IDA Pro, it could be

useful to review about the supported Windows types, which will prevent you to use incompatible types for

C/C++: https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types.

About inserting a lengthy list of structures into the IDA’s database, it is definitely a demanding task and

there are measures that might could save our time in a next opportunity. As an example, you can mark all

new structures that you have inserted into Local Types tab, right clicking them, and choosing Export to a

header file option. Afterwords, you would have a list of structure’s definitions, which it would be possible

to choose only a few ones (respecting all dependencies) and insert them into another IDA Pro database. It

could save you time to research all the structures again and edit them to adapt to the correct format.

Furthermore, you could consider a more solid and definitive work by creating a custom type-library to

import whenever is necessary. It is not hard whether you have a self-contained header file and can save

your time for other analysis. A quick review of the procedure follows:

1. Download Tilib 8.3 from https://hex-rays.com/download-center/.

2. Extract both versions (32-bit and 64-bit) to a folder.

3. Copy the extracted folder into IDA Pro’s folder: C:\Program Files\IDA Pro 8.3

4. If you have any problem using tilib64.exe, copy the executable itself to IDA Pro 8.3 folder, where

the IDA Pro executables are kept. It could be easier to use it.

5. Execute: tilib64.exe -c -Cc1 -h<custom header> <custom header>.til.

6. If your custom header file also needs other headers (#include directives) then you must specify

them:

-I<directory holding needed headers> (use one -I option for each necessary directory).

7. If everything goes well, check the type library’s content: tilib64.exe -l <custom headers>.

8. Make the newly created type-library available for IDA Pro by copying it to C:\Program Files\IDA Pro

8.3\til\pc folder.

9. Go to View | Open subviews | Type Libraries (SHIFT+F11).

10. Pressing insert key should show a list of available type libraries, and the custom one should be

there.

Eventually this brief review about a handful of features from IDA Pro can help you throughout this article

or in other opportunities and articles too.

Returning to Figure 51, it is time to continue our work and leave further observations. If readers look at the

IDA View, you will see an interesting instruction soon after the cs:__imp_ExAcquireResourceSharedLite

instruction: nop dword ptr [rax+rax+00h]

https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://hex-rays.com/download-center/

https://exploitreversing.com

64 | P a g e

At a first moment, it could represent an error in the disassembling process because this NOP instruction

does not make sense. However, it is not an error, and the instruction is used for alignment. An explanation

for this instruction is on page 4-165 from Intel Architectures Software Developer’s Manual (SEP/2023):

[Figure 60] NOP instruction from INTEL Architectures Software Developer’s Manual (SEP/2023)

Additionally, it can be part of the compilation process or even used also as space reservation, like the old

mov edi, edi instruction, for future hot patches.

Proceeding with our overview, whether we compare Figures 51 and 52, and use Figure 58 for supporting

the analysis, we will find a series of details. I will not be commenting on the instrumentation using WPP

again because they are there for checking whether any condition is wrong (and return) and logging critical

issues related to such conditions, serving as useful debugging resource.

To old driver (vulnerable), we have the following sequence of lines including calls instructions:

1. ExAcquireResourceSharedLite

2. if ((unsigned int)Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled())

3. if (!Smb2ValidateVolumeObjectsMatch(a1, v5)) // inside the if-clause (2)

4. else if (!Smb2ValidateVolumeObjectsMatch_Servicing(a1))

5. ExReleaseResourceLite((PERESOURCE)(*(_QWORD *)v5 + 0x50i64)) // inside else-if clause (4)

6. ExReleaseResourceLite((PERESOURCE)(*(_QWORD *)v5 + 0x50i64)); // out of any clause.

7. var_STATUS_INFO_LENGTH_MISMATCH = Smb2PopulateShareNormalizedNameCache

To the new driver (changed/fixed), we have the following sequence of lines including calls instructions:

1. ExAcquireResourceSharedLite

2. if (Smb2ValidateVolumeObjectsMatch(a1, v5))

3. ExReleaseResourceLite((PERESOURCE)(*(_QWORD *)v5 + 80i64)); //inside if clause (2)

4. if (Smb2ValidateVolumeObjectsMatch(a1, v5)) //inside if-clause (2)

5. ExReleaseResourceLite((PERESOURCE)(*(_QWORD *)v5 + 80i64)) // inside if-clause (4)

6. v2 = Smb2PopulateShareNormalizedNameCache(a1, v6, &v30);

We can easily notice that in the old driver there is a

Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled() function that is not present in the new

driver. At the same way, there is another function named Smb2ValidateVolumeObjectsMatch_Servicing

that has a similar name with the new driver but containing the word Servicing, and also with only one

argument instead of having two arguments as seen in the new driver.

https://exploitreversing.com

65 | P a g e

Another point is that in the old driver uses two invocations of ExReleaseResourceLite function (even

though only one is really called) while the second one does the same invocation only once. Anyway,

resources being allocated are being deallocated in both cases.

For the old driver, we have the following interpretation about the execution sequence:

▪ If the previously allocated buffer is not less than 4 (line 10), so proceed. Otherwise, log the event

and return an error.

▪ The shared resource is allocated.

▪ A checking (SMB NullCheck) is performed. If the checking done inside this routine is not successful,

it logs the event, releases the shared resource, and returns an error. If it is then it proceeds.

▪ If the file queried is at the same shared volume, then proceed. If it is not, it logs the event, releases

the shared resource, and returns an error.

▪ Release the resource, which has been used only for volume validation, and call

Smb2PopulateShareNormalizedNameCache routine.

For the new driver, the following sequence happen:

▪ If the allocated buffer is not less than 4 (line 10), so proceed. Otherwise, log the event and return

an error.

▪ The shared resource is allocated.

▪ There is a verification to check if the file queried is at the same shared volume. If such a checking is

successful, then proceed. If it is not, the shared resource is released (line 194).

▪ The resource is released, which has been used only for volume validation and call

Smb2PopulateShareNormalizedNameCache routine.

 To supplement our information, the content of

Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled function is shown below:

[Figure 61] Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled function

The code above is using Windows Implementation Libraries (WIL), which is a header-only C++ library, and

that can be used in different contexts such as trace logging, resource management and Registry’s

interaction, and only for mentioning a brief list of them. As another example, WIL is usually used to

implement RAII (Resource Acquisition is Initialization) resource wrappers, which are used to manage

object destruction when a handle to a kernel object is closed.

https://exploitreversing.com

66 | P a g e

Based on information exposed previously, comments follow:

▪ The execution flow between them is similar (not equal), and there are minor changes in terms of

functions being invoked and instrumented.

▪ The “servicing” suffix for two routines in the old driver (JUL/2022) suggests that these routines can

be a kind of “intermediate” or transitory fix due to previous issues in this part of the code, which

will be consolidated in the next version (our updated version from AUG/2022).

▪ This impression is reinforced since there is not any message based on TMF (Trace Message Format

File) on the assembly code. Even the presence of multiples points of instrumentation also suggests

previous issues in this routine (Smb2QueryFileNormalizedName) or around it.

▪ Another curious fact is that If Feature_Servicing_SMBNullCheck_38033371__private_IsEnabled

function reports a positive condition, the Smb2ValidateVolumeObjectsMatch is called. However, if

there is something wrong, it executes Smb2ValidateVolumeObjectsMatch_Servicing. The fact of

having two routines that should do the same tasks but implemented slightly different also provides

us with additional foundations to believe in this transition phase. A comparison can help, and

remember that both are coming from the old (vulnerable) driver:

[Figure 62] Smb2ValidateVolumeObjectsMatch and Smb2ValidateVolumeObjectMatch_Servicing

One important aspect is that sometimes might be easier to notice this kind of issue by using the IDA View

than the pseudo-code, which shows the assembly code, and that is also a strong reason for always

examining both to make sure that they are corresponding to each other:

V3 is checked to prevent to

null pointer dereference

attack (CWE-476).

V3 is not checked likely due to the

assumption that it represents a

member of a structure/class (v2) that

should be initialized and never

should be equal to zero.

https://exploitreversing.com

67 | P a g e

[Figure 63] Smb2ValidateVolumeObjectsMatch and Smb2ValidateVolumeObjectMatch_Servicing (2)

From a different point of view, readers can notice that the instruction test rcx, rcx (!v3 in pseudo code)

exists on the left side (Smb2ValidateVolumeObjectsMatch) and does not exist on the right side

(Smb2ValidateVolumeObjectMatch_Servicing).

If readers compare Smb2ValidateVolumeObjectsMatch routine from Figure 62 (old driver – JUL/2022) to

the new driver, you will notice that they are the same (including the null pointer dereference verification):

[Figure 64] Smb2ValidateVolumeObjectsMatch (newer driver – AUG/2022)

Curiously, according to the Microsoft registers, this issue has been reported in May/2022 (CVE-2022-

32230), but it was not considered a vulnerability in June/2022. Furthermore, if readers list SMB

vulnerabilities from January to August (our vulnerability), you will notice that there were plenty of issues:

https://exploitreversing.com

68 | P a g e

[Figure 65] SMB vulnerabilities from January/2022 to August/2022

All routines that we have been reviewing so far belong to Smb2QueryFileNormalizedName routine, which

is called from Smb2ExecuteQueryInfo routine. This routine is associated to a SMB2 QUERY_INFO Request

packet that, once sent by a client, it is used to request information about a file, named pipe or volume,

according to the Microsoft Documentation (MS-SMB2 protocol guide: https://learn.microsoft.com/en-

us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962). The request

structure is formed by a series of fields, which one of them is FileInfoClass that, as expected, it is used for

file information queries and can have one of the FILE_INFORMATION_CLASS values, and one of them is

FileNormalizedNamInformation. Following the same documentation reference, once the request is for a

FileNormalizedNameInfomation, the server must convert the information returned by the object store to

a normalized path, which is a full pathname of a directory or even a file related to the root or share on

which it stored. If readers check MS-FCC protocol guide (https://learn.microsoft.com/en-

us/openspecs/windows_protocols/ms-fscc/20bcadba-808c-4880-b757-4af93e41edf6) in 2.4.30 section

(FileNormalizedNameInformation), you will confirm that there two possible answers to the request:

STATUS_NOT_SUPPORTED (0xC0000BB – it appear along the code several times) and

STATUS_BUFFER_OVERFLOW. The MS-SMB2 protocol guide tells us that FileNormalizedNameInformation

information class was not supported by Windows 10 v1709 and prior versions.

We should remember that CVE-2022-35804 is our chosen vulnerability for analysis since the beginning of

this article. Additionally, Microsoft recommended at that time disabling SMBv3 compression to block

unauthenticated attackers from exploiting the vulnerability against an SMBv3 Client and Server. If we

remember of the FileInfoClass class, there is also FILE_INFORMATION_CLASS value for compression

named FileCompressionInformation. For now, we do not know whether is important, or even how

important it can be, but we should keep it registered.

Our analysis has been concentrated only on a piece of Smb2QueryFileNormalizedName routine, there is

much more code in the routine and interesting details. It is not my intention to analyze line by line such a

routine right now, but only show the process and how reverse engineering is also useful for understanding

what you are seeing in front of you. Of course, it would be much simpler to search for “patterns” of

vulnerabilities, but in this case, it would be not so useful for you.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/20bcadba-808c-4880-b757-4af93e41edf6
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/20bcadba-808c-4880-b757-4af93e41edf6

https://exploitreversing.com

69 | P a g e

There are other aspects that should be commented on or even refreshed. As we learned from previous

sections, there are other function that presented a partial match in terms of similarity:

[Figure 66 - A] Partial and unmatched routines in srv2.sys (according to Diaphora)

From BinDiff tool view, we have a similar view:

[Figure 66 - B] BinDiff (srv2.sys)

https://exploitreversing.com

70 | P a g e

There are seven routines that presented partial matches, and we quickly analyzed one of them, and the

last one is the routine that presents major differences, which we quickly analyzed. Unfortunately, the other

six routines with partial matches do not present anything quite interesting to highlight at this point, and

most of the changes between versions come from different GUIDs. Additionally, we already commented

about Smb2ValidateVolumeObjectsMatch_Servicing and Feature_Servicing_SMBNullCheck routines.

12. Reversing and collecting additional information

It is time to go to the driver’s entry point (in the previous version) to examine its content. If readers press

CTRL+E, IDA Pro shows the GsDriverEntry routine and, from there, you will land at DriverEntry():

[Figure 67] DriverEntry (first part)

The beginning of this DriverEntry routine is not attractive but deserves brief comments. A

_DEVICE_OBJECT structure (WPP_MAIN_CB) is initialized, and a kernel-mode event provider, which is

associated with a callback (tlgEnableCallback) that is called whenever a tracing session interacts with

https://exploitreversing.com

71 | P a g e

the provider will be registered, or even the caller will be registered as WMI data provider depending on the

value of WPPTraceSuite variable. Afterwards there is a tracing indicating that the DriverEntry routine has

been invoked and there is also a routine (SrvNetIsDriverLoaded) that checks whether the srvnet.sys driver

is loaded before continuing. If it is not, the message “SrvNet driver is not loaded” will be logged and

STATUS_DRIVER_UNABLE_TO_LOAD error.

The srvnet.sys driver (“srv” means Server Network Driver) is one the most important parts of the SMB

(Server Message Block) protocol, and fundamentally acts as a kind of interface between the file network

protocol and file sharing protocol. By working as an interface, its key role is to monitor incoming messages

and forward any incoming message (SMB2 or SMB3) to srv2.sys driver. Additionally, the import table of

srv2.sys holds diverse SMB routines belonging to srvnet.sys. About the code from Figure 67, I have

renamed variables (N key) and applying enumerations (M key), as I am going to do from this point onward.

To check functions imported from svrnet.sys in srv2.sys driver from the command line (PowerShell),

readers can install the NtObjectManager authored by James Forshaw (@tiraniddo) as shown below:

▪ Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned -Force

▪ Install-Module NtObjectManager -Scope CurrentUser -Force

▪ Update-Module NtObjectManager

To import the module, execute:

▪ Import-Module NtObjectManager

PS C:\Users\Administrator> Get-Win32ModuleImport -Path "C:\Windows\System32\drivers\srv2.sys"

DllName FunctionCount DelayLoaded
---------------------- ------------------- -----------------
ntoskrnl.exe 267 False
HAL.dll 1 False
TDI.SYS 1 False
srvnet.sys 157 False
ext-ms-win-ntos-werkernel-l1-1-1.dll 5 False
ksecdd.sys 17 False

PS C:\Users\Administrator> Get-Win32ModuleImport -Path "C:\Windows\System32\drivers\srv2.sys" -
Dllname "srvnet.sys" | Select-Object Name -First 8

Name

SrvNetQueryConnectionInformation
SrvNetCloseConnection
SrvNetDisconnectConnection
SrvNetSetConnectionInstanceId
SmbCryptoKeyTableDestroy
SmbCryptoKeyTableCreate
SrvLibApplySrvDeviceAcl
SrvNetIsDriverLoaded

https://exploitreversing.com

72 | P a g e

PS C:\Users\Administrator> Get-NtKernelModule | Sort-Object -Property Name | Where-Object Name -
Match "^srv"
Name ImageBase ImageSize
------------- -------------------------- --------------
srvnet.sys FFFFF8041B230000 385024
srv2.sys FFFFF8041B420000 937984

Proceeding to the next lines of code, we have:

[Figure 68] DriverEntry (second part)

There is a brief list of observations here:

▪ IoCreateDevice function creates a device object for applications that interact with the driver.

▪ The device name is \\Device\\Srv2, as expected.

▪ The device type is FILE_DEVICE_NETWOR_FILE_SYSTEM, as expected.

▪ FILE_DEVICE_SECURITY_OPEN was specified for DeviceCharacteristics parameter, as

recommended.

▪ SrvLibApplySrvDeviceAcl function, from srvnet.sys, is used by the driver to apply an ACL (Access

Control List) to the device object specified at the first parameter. As I am not sure about the correct

order of parameters, I left them as hexadecimal for now.

It follows third part of the code:

file://///Device/Srv2

https://exploitreversing.com

73 | P a g e

[Figure 69] DriverEntry (third part)

The third part of the code starts on line 85, and if it didn’t get to set Security Descriptor on the device

object, so such an object is deleted, both counters (Srv2DeviceObject and Srv2ServerProcess) are zeroed

and the kernel-mode event provider (EtwUnregister function within Real_Driver_Entry routine) is

unregistered before exiting. Additionally, the device object is removed by calling IoDeleteDevice function.

https://exploitreversing.com

74 | P a g e

If any error has happened, the current processed ID is retrieved by calling IoGetCurrentProcess function

and the driver dispatch table is filled (remember that there are 28 slots) with pointer to

Srv2DefaultDispatch routine (lines 114 to 117). Afterwards, a pointer to a specific and meaningful routine

is attributed to each relevant slot (dispatch routines): Srv2Cleanup, Srv2Close, Srv2Create and

Srv2DeviceControl. Furthermore, the DriverUnload routine is also set.

The call for ExInitializeResourceLite function (line 124) can be interesting for readers because, as you

remember from previous pages, we did not know about the type of an argument for the same function

(check Figure 51, on page 55), and here this line can provide you with a great a direction about how to

handle that problem (search for _DRIVER_OBJECT, _KEVENT, and associated structures).

The IoCreateNotificationEvent routine is called to create a named notification event

(\\KernelObjects\\HighNonPagedPoolCondition), which is created, opened and set it up as signaled, and

that is employed to notify threads that an event has occurred. If the notification event creation fails,

everything is undone and expected tasks follow such as dereferencing objects, releasing resources and

locks and closing handles. If the code failed to register srv2.sys as a SMB2 performance counter provider

(Srv2RegisterPerfCounterProvider function on line 148), so it will send a log message to notify it too.

I will not analyze all dispatch routines but will do only a quick overview about Srv2Create and

SrvDeviceControl. First, we will examine the Srv2Create routine:

[Figure 70] Srv2Create routine

file://///KernelObjects/HighNonPagedPoolCondition

https://exploitreversing.com

75 | P a g e

There are a small number of things happening in this routine, and readers should know that I renamed a

few local variables and apply enumerations, which the last one (IO_NETWORK_INCREMENT) can be a bit

hard to know because of the documentation is a bit vague, but readers can learn about available priority

boosts from the following website: https://github.com/MicrosoftDocs/windows-driver-

docs/blob/staging/windows-driver-docs-pr/wdf/specifying-priority-boosts-when-completing-i-o-

requests.md. The first act is calling the IoGetRequestorProcess function, which returns a process’ pointer

(into the RequestorProcess variable) for the thread that requested the I/O operation. if there is not an

attached thread, the function returns a point to the process itself. Soon afterwards the

PsGetProcessServerSilo function returns a reference to sever silo object (basically, a container) for the

current process. If PsGetProcessServerSilo function returns successfully, the current IO_STACK_LOCATION

is retrieved and both FsContext and FsContext2 members, which have a meaningful importance for file

system drivers, are initialized to zero. If PsGetProcessServerSilo call fails, then STATUS_ACCESS_DENIED is

returned. Finally, IofCompleteRequest is called to indicate that the caller (the thread) has completed the

necessary processing and is returning the IRP to the I/O manager.

The Srv2DeviceControl routine is a quite relevant and, in this case, tricky routine, which is shown below:

[Figure 71] Srv2DeviceControl routine – WRONG decompiling representation

https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/wdf/specifying-priority-boosts-when-completing-i-o-requests.md
https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/wdf/specifying-priority-boosts-when-completing-i-o-requests.md
https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/wdf/specifying-priority-boosts-when-completing-i-o-requests.md

https://exploitreversing.com

76 | P a g e

Before starting any discussion about the Srv2DeviceControl routine we must fix its pseudo-code because it

is incorrect. Unfortunately, IO_STACK_LOCATION is a structure composed of individual fields, but one of

them (Parameters) is a large union. Therefore, we need to adjust the Parameter field for that its member

reflects the exact representation according to the dispatch routine (Create, Read, Write, QueryFile,

DeviceIoControl and so on). If readers analyze the code shown on the Figure 71, you will see that

parameters are not related to the DeviceIoControl dispatch routine that should have the following names:

▪ Parameters.DeviceIoControl.OutputBufferLength

▪ Parameters.DeviceIoControl.InputBufferLength

▪ Parameters.DeviceIoControl.IoControlCode

▪ Parameters.DeviceIoControl.Type3InputBuffer

How to fix this imprecision? The Parameter field’s type is correct, and its type is, in fact,

_IO_STACK_LOCATION. However, the member’s type is wrong, and readers need to right click on each one

(Read, Create) and change their types by picking up Select Union Field (ALT+Y). Once again: do not right-

click on Parameters, but on the field member of Parameters. For example, to alter the union field for

LowPart = CurrentStackLocation->Parameters.Read.ByteOffset.LowPart instruction (line 20 – wrong

representation), right-click on Read sub-field and press CTRL+Y, which will show the image below:

[Figure 72] Altering a Union Field

https://exploitreversing.com

77 | P a g e

As readers can notice, I searched for DeviceIoControl, picked up it and clicked OK. Repeat the same steps

for similar lines. My suggestion is that for other functions and drivers, if you are not sure about the correct

fields, so check this page from Microsoft documentation here: https://learn.microsoft.com/en-

us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location. Additionally, you need to rename

the fields to mirror its new member’s names and apply enumerations. The improved code is shown below:

[Figure 73] Improved representation of Srv2DeviceControl routine (part 1)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location

https://exploitreversing.com

78 | P a g e

[Figure 74] Improved representation of Srv2DeviceControl routine (part 2)

There is a series of comments to do about the improved version of the code from Figures 73 and 74:

▪ On lines 20, 21, 22, 25, 27, 32 and 33, the previously described approach of adapting the correct

structure to the union field (ALT+Y) has been applied.

▪ On the same lines mentioned above, pay attention to the fact that I renamed all local variables to

the same name as their field members.

▪ Using enumerations (M), I applied a symbolic representation on lines 25 and 29, and I needed to

insert _MODE enumeration (check Figure 75). However, readers need always to take care not to

apply the wrong symbol, which demands attention on the interpretation and the involved context.

▪ The ProbeForRead function (lines 31 and 35) checks whether the user-mode buffer resides in the

user-mode space, and the value (UserMode symbol) on line 29 matches exactly with this purpose.

▪ On line 40, I applied the same technique of changing to the correct structure in a union field

(ALT+Y), but this time the trouble structure was AssociatedIrp. If readers check the IRP

documentation, you will see that as the code manages data’s content then I needed to change to

SystemBuffer. Other options would be MasterIrp and IrpCount. Check the documentation:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp.

▪ On line 44, to apply flags I had to add MACRO_MDL enumeration first: SHIFT+F10 → INSERT →

Add standard enum by enum name → MACRO_MDL. Check Figure 75:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp

https://exploitreversing.com

79 | P a g e

[Figure 75] _MODE and _MDL enumerations

▪ Initially, the code is looking for a corresponding system virtual memory mapping that already

represents and describes buffer described by the MDL. As the instruction makes part of a ternary

operator then once the system virtual address is already available, it returns the pointer to such a

memory. If it is not available then the MnMapLockedPagesSpecifyCache function will map physical

pages made accessible and available by a MDL which describes the layout of the virtual memory

buffer in physical memory, to a virtual address. Additionally, it also allows the caller to specify the

cache attribute (from _MEMORY_CACHING_TYPE enumeration) during the mapping process. As

expected, MmCached means that the memory request should be cached.

▪ Another note is that this part of the code (from line 39 to line 59) handles with KernelMode access

mode, while code from line 23 to line 37 handles with Usermode access.

▪ On Line 52 there is a good point to comment and that certainly readers could wonder how I got

both values appeared as an OR operation. The natural operation would be to add the

_MM_PAGE_PRIORITY enumeration, however it holds only the standard values that are

LowPagePriority, NormalPagePriority and HighPagePriority. The issue is that since Windows 8

there are another two available values, MdlMappingNoWrite and MdlMappingNoExecute, which

are bitwise-Ored and are added separately, each one in its own enumeration, into the IDB

database. Thus, one of potential approaches to manage this problem is:

o Create a new enumeration and provide any name you want for it.

o Add NormalPagePriority (0x10) and HighPagePriority (0x20) as members.

https://exploitreversing.com

80 | P a g e

o Add MdlMappingNoExecute (0x40000000) as a bitwised member (there is a check box for

this purpose) and attribute the same value for the mask. It may want to provide

MM_PAGE_PRIORITY as mask name.

o Add MdlMappingNoWrite (0x80000000) as a bitwised member, and pickup as mask the

same value and mask name.

o Once the enumeration is created, it is just to apply it on the value. The result should be

identical to shown on line 52.

o The enumeration will be look like as shown below:

[Figure 76] Customized enumerations

▪ On line 63, it is the same case as line 40, where it is requested to change the field to be used

because it is involved with manipulation of the buffer.

▪ On line 66, the Srv2ProcessFsctl routine processes FSCTLs (File System Control Requests) that

comes from the client, and in this case the routine seems to receive (read) and process such data.

Readers might remember that a file system control code (FSCTL) is a command sent to the file

system for querying or changing a current behavior.

▪ On line 80, the Srv2QueueIrptoSystem routine goal is to queue an IRP to a system thread pool with

the objective of improving the performance:

[Figure 77] Srv2QueueIrpToSystem

▪ There are good details about this routine:

https://exploitreversing.com

81 | P a g e

o The driver uses IoAllocateWorkItem function to allocate a work item, which is a kind of task

represented by a _IO_WORKITEM structure that is used to perform delayed processing and

represents an associated callback that it is the responsible for executing any related and

necessary processing. Alternatively, the driver could use the IoInitializeWorkItem function

to initialize a given and existing buffer as a work item.

o The _IO_WORKITEM structure is an opaque (not documented by Microsoft) structure that

describes a work item while using it for a system worker thread.

o As readers probably have already noticed, work items are very similar to DPC (Deferred

Procedure Call) runs, but work item always executes at IRQL == PASSIVE_LEVEL while DPC

at IRQ 2, even though DPC can delegate additional operations to work items to execute

them at IRQL == PASSIVE_LEVEL, which could be more appropriate.

o The work item is associated with a Workitem routine (IO_WORKITEM_ROUTINE) by calling

IoQueueWorkItem (or IoQueueWorkItemEx) function (check documentation:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-

ioqueueworkitemex). This function also adds the work item in a queue for later processing,

so working as an asynchronous operation.

o Virgilius Project provides us with necessary structure definitions for creating the

_IO_WORKITEM structure in the IDB, whether this is necessary, by going to Views → Open

subviews → Local Types or SHIFT+F1 shortcut. Afterwards, press INSERT key and type

definitions as shown below:

▪ https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20

Update)/_IO_WORKITEM.

▪ https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20

Update)/_WORK_QUEUE_ITEM.

[Figure 78] Creating an _IO_WORKITEM in IDB

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioqueueworkitemex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioqueueworkitemex
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_IO_WORKITEM
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_IO_WORKITEM
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_WORK_QUEUE_ITEM
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_WORK_QUEUE_ITEM

https://exploitreversing.com

82 | P a g e

▪ I have avoided commenting about other routines because this discussion is already too long, but

Srv2ProcessFsctl routine is involved with the starting of the driver, instance and server process

related to SMB. Curiously, the second and nineth parameters are not initially used, but this fact

deserves to be analyzed carefully and we will not do it here.

It is time to return to DriverEntry routine (Figure 69), where IoCreateNotificationEvent function (line 129)

creates (or open) a named notification event (HighNonPagedPoolConditions) to notify threads when this

event occurs. In general, synchronization and notification events are used to control the execution of a

piece of code.

In terms of code, it is enough, and I hope readers have realized how complex can be a real kernel driver,

and it takes time to make a simple analysis and get a reasonable comprehension about its working.

Change directions of our analysis, there other methods to collect additional information about the driver,

and one of them is to use Driver Buddy Reload plugin by going to menu Edit → Plugins → Driver Buddy

Reloaded or pressing CTRL+ALT+A. The output is long and saved into a log file, but in our case the plugins

reported a summary of the following items:

▪ Two DeviceNames: \Device\Srv2 and \Device\NamedPipes

▪ Countless routines using memmove function, which is always a candidate a security issues such as

out-of-bounds read/write vulnerabilities and overflows.

▪ A brief list of interesting APIs such as:

o MmBuildMdlForNonPagedPool

o MmMapLockedPagesSpecifyCache

o MmGetSystemRoutineAddress

o ObfReferenceObject, ObfDereferenceObject

o IofCallDriver

o ZwFsControlFile, ZwCreateEvent, ZwClose, ZwReadFile

o MmSizeOfMdl, MmUnlockPages

o RtlCompareMemory

▪ Three IOCTLs:

▪ 0x70214 | FILE_DEVICE_DISK | METHOD_BUFFERED 0 | FILE_ANY_ACCESS (0)

▪ 0x4D0000 | FILE_DEVICE_VIRTUAL_BLOCK | METHOD_BUFFERED 0 | FILE_ANY_ACCESS (0)

▪ 0x4D0008 | FILE_DEVICE_VIRTUAL_BLOCK | METHOD_BUFFERED 0 | FILE_ANY_ACCESS (0)

The followed approaches so far and artifacts that we just found provide readers with guidelines and

directions (the report provides you with each artifact and its respective address) to research and

understand whether there is any security issue that can be found in this driver (and any other by following

the same approach) beyond vulnerabilities officially reported. Although a dynamic approach will be left for

future articles, readers can gather relevant information about srv2.sys through DeviceTree tools, as shown

previously:

https://exploitreversing.com

83 | P a g e

[Figure 79] DeviceTree: checking srv2.sys (1)

[Figure 80] DeviceTree: checking srv2.sys (2)

We got valuable information from DeviceTree tool and Driver Buddy Reloaded plugin, and this set of

artifacts will provide us with valuable information that will help to device how proceed to interact with the

driver dynamically, when it will be necessary to join information collected from static analysis with the

understanding of the real time interaction with the driver, which can confirm hypothesis or not, but that

fundamentally brings context and a better picture for the analysis.

https://exploitreversing.com

84 | P a g e

As a last suggestion, one simple and sometimes good approach for quickly locating potential differences

between two binaries is to generate (export) a pseudo code from IDA Pro (File → Produce File → Create C

File or CTRL+F5 shortcut) for both versions of the srv2.sys (or any other binary) and compare them using

WinMerge (https://winmerge.org/?lang=en), which does a good job:

[Figure 81] WinMerge: comparing pseudo codes

WinMerge’s purpose is different from BinDiff and Diaphora, but it can be useful for initial verification.

13. References

For readers that might be interested in learning details about topics mentioned here, a brief list of valuable

resources follows below:

▪ Microsoft Learn: https://learn.microsoft.com/en-us/windows-hardware/drivers/

▪ Windows drivers samples: https://github.com/Microsoft/Windows-driver-samples

▪ Windows Internals 7th edition book (Parts 1 and 2) by Pavel Yosifovich , Alex Ionescu, Mark

Russinovich, David Solomon, and Andrea Allievi.

▪ Practical Reverse Engineering by Bruce Dang, Alexandre Gazet and Elias Bachaalany.

▪ Developing Drivers with the Windows Driver Foundation by Penny Orwick.

▪ Authors of prominent articles and presentations (alphabetic order): Ilja Van Sprundel, Mateusz

Jurczyk, Morten Schenk, Nícolas Economou, Sébastien Duquette, Tarjei Mandt, and others.

https://winmerge.org/?lang=en
https://learn.microsoft.com/en-us/windows-hardware/drivers/
https://github.com/Microsoft/Windows-driver-samples

https://exploitreversing.com

85 | P a g e

14. Blogs and channels:

A list of excellent websites, channels, and their respective Twitter handles, sorted by author in alphabetical

order, follows below:

▪ https://hasherezade.github.io/articles.html (by Aleksandra Doniec: @hasherezade)

▪ https://malwareunicorn.org/#/workshops (by Amanda Rousseau: @malwareunicorn)

▪ https://russianpanda.com/ (by Ann: @AnFam17)

▪ https://captmeelo.com/ (by Capt. Meelo: @CaptMeelo)

▪ https://csandker.io/ (by Carsten Sandker: @0xcsandker)

▪ https://chuongdong.com/ (by Chuong Dong: @cPeterr)

▪ https://doar-e.github.io/ (Diary of a reverse-engineer)

▪ https://elis531989.medium.com/ (by Eli Salem: @elisalem9)

▪ https://www.youtube.com/@allthingsida (by Elias Bachaalany: @0xeb and @allthingsida)

▪ https://googleprojectzero.blogspot.com/ (Google Project Zero)

▪ https://www.hexacorn.com/index.html (@Hexacorn)

▪ https://hex-rays.com/blog/ (by Hex-Rays: @HexRaysSA)

▪ https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering (by Jiří Vinopal:

@vinopaljiri)

▪ https://kienmanowar.wordpress.com/ (by Kien Tran Trung: @kienbigmummy)

▪ https://www.inversecos.com/ (by Lina Lau: @inversecos)

▪ https://maldroid.github.io/ (Łukasz Siewierski: @maldr0id)

▪ https://github.com/mnrkbys (by Minoru Kobayashi: @unkn0wnbit)

▪ https://voidsec.com/member/voidsec/ (by Paolo Stagno: @Void_Sec)

▪ https://www.youtube.com/@OffByOneSecurity (by Stephen Sims: @Steph3nSims)

▪ https://windows-internals.com/author/yarden/ (by Yarden Shafir @yarden_shafir)

15. Conclusion

This article has only scratched the surface of this topic, but it can be used as an introduction to binary

diffing and also as the second part of the static analysis for drivers. A natural continuation of this topic is

the dynamic analysis to learn how to interact as a client, how to debug and how to perform fuzzing the

driver.

Just in case you want to stay connected:

▪ Twitter: @ale_sp_brazil

▪ Blog: https://exploitreversing.com

Keep reversing and I see you at next time!

Alexandre Borges

https://hasherezade.github.io/articles.html
https://malwareunicorn.org/#/workshops
https://russianpanda.com/
https://captmeelo.com/
https://csandker.io/
https://chuongdong.com/
https://doar-e.github.io/
https://elis531989.medium.com/
https://www.youtube.com/@allthingsida
https://googleprojectzero.blogspot.com/
https://www.hexacorn.com/index.html
https://hex-rays.com/blog/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://kienmanowar.wordpress.com/
https://www.inversecos.com/
https://maldroid.github.io/
https://github.com/mnrkbys
https://voidsec.com/member/voidsec/
https://www.youtube.com/@OffByOneSecurity
https://windows-internals.com/author/yarden/
https://exploitreversing.com/

	0. Quote
	1. Introduction
	2. Acknowledgments
	3. Environment Setup
	4. References
	5. Gathering initial information
	6. Investigating patches
	7. Binary Diffing using BinDiff tool
	8. Binary Diffing using Diaphora tool
	9. General code notes
	10. Review of kernel driver concepts and considerations about vulnerabilities
	11. Analysis of binary differences
	12. Reversing and collecting additional information
	13. References
	14. Blogs and channels:
	15. Conclusion

